Math, asked by pravinrajagopal11, 1 year ago

x=a(theta+sin theta) y=a(1-cos theta) find d square y/dx square at theta =pi/2

Answers

Answered by BrainlyQueen01
8
\sf Answer :

\sf Step-by-step explanation :

 \sf x = a \{\theta + \sin( \theta) \} \\ \\ \sf y = a \{1 - \cos( \theta) \}

\sf \frac {dy} {d \theta} = a \{ 0 - ( - sin \theta ) \}

\sf \frac {dy} {d \theta} = a \sin \theta

\sf \frac {dx} {d \theta} = a ( 1 + \cos \theta )

\sf \frac {\frac {dy} {d \theta}} {\frac {dx} {d \theta}} = \frac { \sin \theta} { 1 + \cos \theta}

\sf At \: \theta = \frac { \pi} {2}

\sf \frac {dy} {dx} = \frac {1} {1 + 0}

\sf \frac {dy} {dx} = 1

\sf Hence, \: the \: answer \: is \: 1

jaya1012: The ans is incomplete. .....
Answered by jaya1012
14
Hiiii ......friend

The answer is here,

I choose alpha instead of theta for my convenience .

Given that,

 = > \: x = a( \alpha + sin \alpha )

Differentiate both sides w.r.t alpha .

 = > \: \frac{dx}{d \alpha } = \frac{d(a( \alpha + sin \alpha )}{d \alpha }

 = > \: a(1 + cos \alpha )

And also given that,

 = > \: y = a(1 - cos \alpha )

Differentiate both sides w.r.t alpha

 = > \: \frac{dy}{d \alpha } = a(0 - ( - sin \alpha ))

 = > \: asin \alpha

 = > \: \frac{dy}{dx} \: = \frac{ \frac{dy}{d \alpha } }{ \frac{dx}{d \alpha } } = \frac{asin \alpha }{a(1 + cos \alpha )}

 = > \: \frac{sin \alpha }{1 + cos \alpha } = \frac{2sin \frac{ \alpha }{2}cos \frac{ \alpha }{2} }{2 {cos}^{2} \frac{ \alpha }{2} }

 = > \: \frac{dy}{dx} = tan \frac{ \alpha }{2}

Differentiate both sides w.r.t x

 = > \: \frac{d }{dx} ( \frac{dy}{dx} ) = \frac{d}{dx} (tan \frac{ \alpha }{2} )

 = > \: {sec}^{2} \frac{ \alpha }2{} \times \frac{1}{2} \times \frac{d \alpha }{dx}

 = > \: {sec}^{2} \frac{ \alpha }{2} \times \frac{1}{2} \times \frac{1}{a(1 + cos \alpha )}

at \: \alpha = \frac{\pi}{2}

 = > \: {sec}^{2} \frac{\pi}{4} \times \frac{1}{2} \times \frac{1}{a(1 + cos( \frac{\pi}{2} ))}

 = > \: 2 \times \frac{1}{2} \times \frac{1}{a}

=> 1/a .

:-)Hope it helps u.
Similar questions