x^a . x^b . x^c = 1 then prove that-,
x^a^2/bc + x^b^2/ac + x^c^2/ab = x^3
Answers
Answered by
8
Answer:
Step-by-step explanation:
Use the basic fundamentals of indices to start with .
Use
Then we use the expansion a³ + b³ + c³ = 3 abc when a + b + c = 0 .
We also know that :
anything raised to the power zero is 1 .
Note that 'anything' should not be a zero .
Also when then m=n .
Answered by
0
ANSWER:-------------
Answer:
xa×xb×xc=1
⟹xa+b+c=x0
⟹a+b+c=0
x^b \times x^c = 1
x^{a+b+c}=x^0
a+b+c=0
{xa+b+c=x0⟹a+b+c=0
xa2bc×xb2
ac×xc2ab
⟹xa2bc+b2ac+c2ab⟹
xa3+b3+c3abc
⟹x3abcabc⟹x3\}
x^{{a^2}{bc}}
x^{{b^2}{ac}}
x^{{c^2}{ab}
x^{{a^2}
{bc}+{b^2}{ac}+\
c^2}{ab}
x^{\{a^3+b^3+c^3}{abc}}
x^{\dfrac{3abc}{abc}}
x^3\end
xbca2×xacb
2×xabc2⟹
xbca2+acb
2+abc2⟹
xabca3+b3+c3⟹
xabc3abc⟹x3
hope it helps:--
T!—!ANKS!!!
Similar questions