x/a-y/b=a-bx/a square-y/b square=0
Answers
Step-by-step explanation:
Answer:
x = a, \: y = bx=a,y=b
Step-by-step explanation:
\begin{gathered} Given \: pair \: of \: Linear \\equations:\end{gathered}GivenpairofLinearequations:
\begin{gathered}\frac{x}{a}-\frac{y}{b}=0\\\implies \frac{bx-ay}{ab}=0\\\implies bx-ay = 0 \:---(1)\end{gathered}ax−by=0⟹abbx−ay=0⟹bx−ay=0−−−(1)
and\: ax+by=a^{2}+b^{2}\:---(2)andax+by=a2+b2−−−(2)
/* multiply equation (1) by b, equation (2) by a, we get
b^{2}x-aby = 0 \:---(3)b2x−aby=0−−−(3)
a^{2}x+aby=a(a^{2}+b^{2})\:---(4)a2x+aby=a(a2+b2)−−−(4)
/* Add equations (3) and (4),we get
x(a^{2}+b^{2})=a(a^{2}+b^{2})x(a2+b2)=a(a2+b2)
\implies x = \frac{a(a^{2}+b^{2})}{(a^{2}+b^{2})}⟹x=(a2+b2)a(a2+b2)
\implies x = a⟹x=a
\begin{gathered}Put \: x = a \: in \: equation \\(1),\: we \: get \end{gathered}Putx=ainequation(1),weget
ab-ay = 0ab−ay=0
\implies b-y = 0⟹b−y=0
\implies y = b⟹y=b
Therefore,.
x = a, \: y = bx=a,y=b