Physics, asked by ginjalasripal, 28 days ago

x=acostheta, y=bsintheta then find d^2y/dx^2=​

Answers

Answered by mathdude500
13

\large\underline{\sf{Given- }}

\rm :\longmapsto\:x = a \: cos\theta

and

\rm :\longmapsto\:y = b \: sin\theta

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\:\dfrac{ {d}^{2} y}{ {dx}^{2} }

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

 \boxed{ \sf{ \:\dfrac{d}{dx}sinx = cosx}}

 \boxed{ \sf{ \:\dfrac{d}{dx}cosx = -  \:  sinx}}

\boxed{ \sf{ \:\dfrac{d}{dx}k \: f(x) =  \: k \: \dfrac{d}{dx} \: f(x)}}

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:x = a \: cos\theta  -  -  - (1)

and

\rm :\longmapsto\:y = b \: sin\theta  -  -  - (2)

Now, Differentiate (1), w. r. t. θ, we get

\rm :\longmapsto\:\dfrac{d}{d\theta }x = \dfrac{d}{d\theta } \: a \: cos\theta

\rm :\longmapsto\:\dfrac{dx}{d\theta } =  -  \: a \: sin\theta  -  -  -  -  (3)

Now, Differentiate (2) w. r. t. θ, we get

\rm :\longmapsto\:\dfrac{d}{d\theta }y = \dfrac{d}{d\theta } \: b \: sin\theta

\rm :\longmapsto\:\dfrac{dy}{d\theta } =  \: b \: cos\theta  -  -  -  - (4)

So,

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{dy}{d\theta } \:  \div  \: \dfrac{dx}{d\theta }

On substituting the values from equation (3) and (4), we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{ b \: cos\theta }{ -  \: a \: sin\theta }

\rm :\longmapsto\:\dfrac{dy}{dx} = -  \:  \dfrac{ b \:  }{\: a \:  } cot\theta

Now, Differentiate both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}\dfrac{dy}{dx} = -  \:  \dfrac{d}{dx}\dfrac{ b \:  }{\: a \:  } cot\theta

\rm :\longmapsto\:\dfrac{ { \: d}^{2} y \: }{ {dx}^{2} }  =  - \dfrac{b}{a}( -  {cosec}^{2}\theta ) \: \dfrac{d\theta }{dx}

\rm :\longmapsto\:\dfrac{ { \: d}^{2} y \: }{ {dx}^{2} }  =  \dfrac{b}{a {sin}^{2} \theta }  \:  \: \dfrac{ - 1}{asin\theta }

\red{\bigg \{ \because \:\dfrac{dx}{d\theta }  =  \:  - a \: sin\theta \bigg \}}

\rm :\longmapsto\:\dfrac{ { \: d}^{2} y \: }{ {dx}^{2} }  =   -  \: \dfrac{b}{ {a}^{2} {sin}^{3} \theta }  \:  \:

\rm :\longmapsto\:\dfrac{ { \: d}^{2} y \: }{ {dx}^{2} }  =   -  \: \dfrac{b}{ {a}^{2}  \dfrac{ {y}^{3} }{ {b}^{3} }  }  \:  \:

\rm :\longmapsto\:\dfrac{ { \: d}^{2} y \: }{ {dx}^{2} }  =   -  \: \dfrac{ {b}^{4} }{ {a}^{2}  {y}^{3} }  \:  \:

Answered by XxitsmrseenuxX
1

Answer:

\large\underline{\sf{Given- }}

\rm :\longmapsto\:x = a \: cos\theta

and

\rm :\longmapsto\:y = b \: sin\theta

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\:\dfrac{ {d}^{2} y}{ {dx}^{2} }

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

 \boxed{ \sf{ \:\dfrac{d}{dx}sinx = cosx}}

 \boxed{ \sf{ \:\dfrac{d}{dx}cosx = -  \:  sinx}}

\boxed{ \sf{ \:\dfrac{d}{dx}k \: f(x) =  \: k \: \dfrac{d}{dx} \: f(x)}}

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:x = a \: cos\theta  -  -  - (1)

and

\rm :\longmapsto\:y = b \: sin\theta  -  -  - (2)

Now, Differentiate (1), w. r. t. θ, we get

\rm :\longmapsto\:\dfrac{d}{d\theta }x = \dfrac{d}{d\theta } \: a \: cos\theta

\rm :\longmapsto\:\dfrac{dx}{d\theta } =  -  \: a \: sin\theta  -  -  -  -  (3)

Now, Differentiate (2) w. r. t. θ, we get

\rm :\longmapsto\:\dfrac{d}{d\theta }y = \dfrac{d}{d\theta } \: b \: sin\theta

\rm :\longmapsto\:\dfrac{dy}{d\theta } =  \: b \: cos\theta  -  -  -  - (4)

So,

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{dy}{d\theta } \:  \div  \: \dfrac{dx}{d\theta }

On substituting the values from equation (3) and (4), we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{ b \: cos\theta }{ -  \: a \: sin\theta }

\rm :\longmapsto\:\dfrac{dy}{dx} = -  \:  \dfrac{ b \:  }{\: a \:  } cot\theta

Now, Differentiate both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}\dfrac{dy}{dx} = -  \:  \dfrac{d}{dx}\dfrac{ b \:  }{\: a \:  } cot\theta

\rm :\longmapsto\:\dfrac{ { \: d}^{2} y \: }{ {dx}^{2} }  =  - \dfrac{b}{a}( -  {cosec}^{2}\theta ) \: \dfrac{d\theta }{dx}

\rm :\longmapsto\:\dfrac{ { \: d}^{2} y \: }{ {dx}^{2} }  =  \dfrac{b}{a {sin}^{2} \theta }  \:  \: \dfrac{ - 1}{asin\theta }

\red{\bigg \{ \because \:\dfrac{dx}{d\theta }  =  \:  - a \: sin\theta \bigg \}}

\rm :\longmapsto\:\dfrac{ { \: d}^{2} y \: }{ {dx}^{2} }  =   -  \: \dfrac{b}{ {a}^{2} {sin}^{3} \theta }  \:  \:

\rm :\longmapsto\:\dfrac{ { \: d}^{2} y \: }{ {dx}^{2} }  =   -  \: \dfrac{b}{ {a}^{2}  \dfrac{ {y}^{3} }{ {b}^{3} }  }  \:  \:

\rm :\longmapsto\:\dfrac{ { \: d}^{2} y \: }{ {dx}^{2} }  =   -  \: \dfrac{ {b}^{4} }{ {a}^{2}  {y}^{3} }  \:  \:

Similar questions