x=cosθ-cos2θ y=sinθ-sin2θ θ ∈ R- {Kπ | K ∈ Z}, cosθ ≠ 1/4,Find dy/dx :(Wherever y is defined as a function of x and dx/dt or dx/dθ≠0)
Answers
Answered by
5
x = cosθ - cos2θ
differentiate with respect to θ,
dx/dθ = d(cosθ - cos2θ)/dθ
= dcosθ/dθ - d(cos2θ)/dθ
= -sinθ -(-sin2θ) × d(2θ)/dθ
= -sinθ + 2sinθ ..........(1)
y = sinθ - sin2θ
differentiate with respect to θ,
dy/dθ = d(sinθ - sin2θ)/dθ
= dsinθ/dθ - d(sin2θ)/dθ
= cosθ - 2cos2θ..........(2)
now, dy/dx = {dy/dθ}/{dx/dθ}
from equations (1) and (2),
dy/dx = (cosθ - 2cos2θ)/(sinθ - 2sin2θ)
differentiate with respect to θ,
dx/dθ = d(cosθ - cos2θ)/dθ
= dcosθ/dθ - d(cos2θ)/dθ
= -sinθ -(-sin2θ) × d(2θ)/dθ
= -sinθ + 2sinθ ..........(1)
y = sinθ - sin2θ
differentiate with respect to θ,
dy/dθ = d(sinθ - sin2θ)/dθ
= dsinθ/dθ - d(sin2θ)/dθ
= cosθ - 2cos2θ..........(2)
now, dy/dx = {dy/dθ}/{dx/dθ}
from equations (1) and (2),
dy/dx = (cosθ - 2cos2θ)/(sinθ - 2sin2θ)
Answered by
6
HELLO DEAR,
GIVEN:-
x = cosθ - cos2θ,
differentiating x w.r.t θ
dx/dθ = d(cosθ - cos2θ)/dθ
=> dx/dθ = -sinθ - 2(-sin2θ)
=> dx/dθ = 2sin2θ - sinθ-------( 1 )
y = sinθ - sin2θ
differentiating y w.r.t θ
dy/dθ = d(sinθ - sin2θ)/dθ
=> dy/dθ = cosθ - 2cos2θ-------( 2 )
NOW, divide---( 1 ) by ---( 2 )
dy/dx = {dy/dθ}/{dx/dθ}
=> dy/dx = (cosθ - 2cos2θ)/(2sinθ - sinθ)
I HOPE ITS HELP YOU DEAR,
THANKS
GIVEN:-
x = cosθ - cos2θ,
differentiating x w.r.t θ
dx/dθ = d(cosθ - cos2θ)/dθ
=> dx/dθ = -sinθ - 2(-sin2θ)
=> dx/dθ = 2sin2θ - sinθ-------( 1 )
y = sinθ - sin2θ
differentiating y w.r.t θ
dy/dθ = d(sinθ - sin2θ)/dθ
=> dy/dθ = cosθ - 2cos2θ-------( 2 )
NOW, divide---( 1 ) by ---( 2 )
dy/dx = {dy/dθ}/{dx/dθ}
=> dy/dx = (cosθ - 2cos2θ)/(2sinθ - sinθ)
I HOPE ITS HELP YOU DEAR,
THANKS
Similar questions