(x) = e(sin x - Cos x) on
п .
T 5T
4.
4
(ISC 2014)
the conditions of Ro
5. Verify Lagranges' Mean Value Theorem for the function f(x) = 2 sin x + sin 2x on (0,7).डिफरेंट ch4 कॉस क्यूब माइनस टू गो टू सी इस इक्वल टू
Answers
Answered by
2
Answer:
Given, f(x)=2sinx+sin2x,x∈[0,π]
f(x) is continuous is [0,π]
f(x) is differentiable in (0,π)
Thus, both the conditions of Lagrange's man value theorem are satisfied by the function f(x) in [0,π], therefore, there exists at least one real number c in [0,π] such that
f
′
(c)=
π−0
f(π)−f(0)
fπ=2sinπ+sin2π=0
f(0)=2sin0+sin0=0
Differentiating f(x) w.r.t. x, we get
f
′
(x)=2cosx+2cos2x
Now, 2cosx+2cos2x=0
⇒2cos
2
x+cosx−1=0 (∵cos2x=2cos
2
x−1)
⇒2cos
2
x+2cosx−cosx−1=0
⇒2cosx(cosx+1)−1(cosx+1)=0
⇒(2cosx−1)(cosx+1)=0
2cos−1=0
or cosx+1=0
2cosx=1 or cosx=−1
cosx=
2
1
or cosx=−1
⇒x=
3
π
,π
∴x=
3
π
∵
3
π
ϵ(0,π)
Thus Lagrange's mean value theorem is verified
Similar questions