Math, asked by harshkumarsaini, 1 month ago

(x) given l = 28, S= 144, and there are total 9 terms. Find a.


by sn=n/2(2a+(n-1)d)​

Answers

Answered by BrainlyTornado
103

ANSWER:

  • The value of a = 4.

\\ \\

GIVEN:

  • L = 28 and S = 144

  • There are total 9 terms.

\\ \\

TO FIND:

  • The value of a.

\\ \\

EXPLANATION:

\red{\boxed{ \bold{ \large{ \blue{S_n=\dfrac{n}{2}(2a+(n-1)d)}}}}} \\  \\  \mapsto\sf L = a + (n - 1)d = 28 \\  \\  \mapsto\sf n = 9 \\  \\  \mapsto\sf S_n = 144  \\  \\\mapsto \sf 144 =  \dfrac{9}{2} (a + 28) \\  \\ \mapsto\sf 16 =  \dfrac{1}{2} (a + 28) \\  \\ \mapsto\sf 32 =  a + 28 \\  \\  \mapsto\sf a = 4\\ \\

Hence the value of a = 4.

Answered by MяMαgıcıαη
164

Question :

  • Given l = 28, S= 144, and there are total 9 terms. Find a.

Given :

  • l = 28
  • S = 144
  • n = 9

To find :

  • First term(a) ?

Required Answer :

  • First term(a) of A.P is 4

Step by step explanation :

ㅤㅤㅤㅤㅤㅤ━━━━━━━━━━

Using formula :

\qquad\red\bigstar\:{\underline{\boxed{\bf{\green{S_{n} = \dfrac{n}{2}[2a + (n - 1)d]}}}}}

:\implies\qquad\tt S_{n} = \dfrac{n}{2}[a + a + (n - 1)d]

:\implies\qquad\tt S_{n} = \dfrac{n}{2}(a + a_{n})

:\implies\qquad\tt S_{n} = \dfrac{n}{2}(a + l)

Putting all known values :

:\implies\qquad\tt 144 = \dfrac{9}{2}(a + 28)

:\implies\qquad\tt \dfrac{144}{9} = \dfrac{1}{2}(a + 28)

:\implies\qquad\tt \dfrac{\cancel{144}}{\cancel{9}} = \dfrac{a + 28}{2}

:\implies\qquad\tt 16 = \dfrac{a + 28}{2}

:\implies\qquad\tt 16\:\times\:2 = a + 28

:\implies\qquad\tt 32 = a + 28

:\implies\qquad\tt a = 32 - 28

:\implies\qquad{\boxed{\frak{\green{a = 4}}}}\:\red\bigstar

ㅤㅤㅤㅤㅤㅤ━━━━━━━━━━

\therefore\:{\underline{\frak{First\:term(a)\:of\:an\:A.P\:\leadsto\:4}}}

Similar questions