Math, asked by randhirgupta5, 1 year ago

X---> lim pi whole root(5+cosx) -2 / (pi-x)^2 tough one *_*

Answers

Answered by manavjaison
1

Answer:

\frac{1}{8}

Step-by-step explanation:

\lim_{x \to \\pi } \frac{\sqrt{5+cosx}-2}{(\pi -x)^{2}} * [\frac{\sqrt{5+cosx} + 2 }{\sqrt{5+cosx} + 2} ]

\lim_{x \to \\pi }  \frac{5 + cosx - 4}{(\pi-x)^{2} } * \frac{1}{\sqrt{5+cosx}+2 }

\lim_{x \to \\pi } \frac{1+cosx}{(\pi -x)^{2} } * \frac{1}{\sqrt{5+cosx} +2}

Now,

Let x - \pi = S

or, x = \pi + S

So,

\lim_{S \to 0} \frac{1+cos(\pi +S)}{(\pi-\pi-S )^{2} } * \frac{1}{\sqrt{5+cos(\pi +S)} +2 }

\lim_{S \to 0} \frac{1-cos S}{S^{2} } * \frac{1}{\sqrt{5-cosS}+2 }

\lim_{S \to 0} 2sin^{2} \frac{S}{2} * \frac{1}{S^{2}} * \frac{1}{\sqrt{5-cosS}+2 }

\lim_{S \to 0} 2\frac{sin^{2}\frac{S}{2}  }{\frac{S^{2} }{4} } * \frac{1}{S^{2} } * \frac{S^{2} }{4} * \frac{1}{\sqrt{5-cosS} +2 }

We can see from here,

(sin x / x)^2 = 1 , where x = S/2

\lim_{S \to 0} \frac{1}{\sqrt{5-cosS}+2 } * \frac{1}{2}

Now, putting the limit,

\frac{1}{\sqrt{5-1} +2} * \frac{1}{2}     [as cos0 = 1]

\frac{1}{2+2} * \frac{1}{2}

\frac{1}{8}

Thanks !

#BAL #answerwithquality

Similar questions