Math, asked by titlibhowmick39, 1 year ago

x = h + a cos t ,y = k + sin t. Eliminate t

Answers

Answered by MarkAsBrainliest
18
Answer :

Given that,

x = h + a cost

⇒ cost = (x - h)/a ...(i)

y = k + sint

⇒ sint = y - k

Now, squaring and adding (i) and (ii), we get

cos²t + sin²t = {(x - h)/a}² + (y - k)²

⇒ 1 = {(x - h)/a}² + (y - k)²

⇒ {(x - h)/a}² + (y - k)² = 1,

which is the required relation after elimination of t.

#MarkAsBrainliest
Answered by IshanS
4
Hi there!

Given :-

♦ x = h + a cos t

⇒ cos t =  \frac{x \: - \: h}{a} ----(i)

♦ y = k + sin t

⇒ sin t = y - k. ---(ii)

Adding n' Squaring eqn. (i) + (ii) :-

sin² t + cos² t =  \frac{x \: - \: h}{a} + (y - k)²

⇒ 1 =  \frac{x \: - \: h}{a} + (y -k)²

 \frac{x \: - \: h}{a} + (y -k)² = 1

[ Required solution after elimination of t. ]

hope it helps! :)
Similar questions