Math, asked by chhayakshayap, 1 year ago

x is equal to 2 + root 3 then find the value of x square + 1 upon x square

Answers

Answered by Panzer786
3
Heya !!!



X = 2 + ✓3



1/X = 1/2+✓3



1/X = 1/2 + ✓3 × ( 2 - ✓3 ) / ( 2-✓3 )



1/X = ( 2 - ✓3 ) / ( 2 + ✓3 ) ( 2 - ✓3 )


1/X = 2-✓3/ (2)² - ( ✓3 )²


1/X = ( 2 - ✓3 )



Therefore,


X + 1/X = ( 2 + ✓3 ) + ( 2-✓3 ) = 4




Squaring both sides,


( X + 1/X)² + (4)²



X² + 1/X² + 2 × X × 1/X = 16




X² + 1/X² = 16-2



X² + 1/X² = 14

★ HOPE IT WILL HELP YOU ★

chhayakshayap: thank you
rishijat: hi
chhayakshayap: hi
abhi569: There is a correction
abhi569: (2 + √3) + (2 - √3)... this line
abhi569: + is not there
chhayakshayap: Ohk please correct this
Answered by abhi569
5
x = 2 + √3

 \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }

By Rationalization,

 \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  \\  \\   \\  =>  \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{(2  +  \sqrt{3} )(2 -  \sqrt{3}) }  \\  \\  \\   = >  \frac{1 }{x}  =  \frac{2 -  \sqrt{3} }{ {2}^{2} -  {( \sqrt{3} )}^{2}  }  \\  \\  \\  = >  \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{4 - 3}  \\  \\  \\   = >  \frac{1}{x}  =   \frac{2 -  \sqrt{3} }{1}   \\  \\  \\  =  >  \frac{1}{x}  = 2 -  \sqrt{3}


Hence,


x +  \frac{1}{x}  = 2 +  \sqrt{3}  + 2 -  \sqrt{3}  \\  \\  =  > x +  \frac{1}{ x}  = 4



Now, Square on both sides,


 {(x +  \frac{1}{x}) }^{2}  =  {4}^{2}  \\  \\  \\  = >  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2(x \times  \frac{1}{x} ) = 16 \\  \\  \\  =>  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 16 \\  \\  \\  =>  {x}^{2}  +  \frac{1}{  {x}^{2} }   = 16 - 2 = 14

chhayakshayap: thank you
abhi569: Welcome
abhi569: (-:
Similar questions