Math, asked by varshasomaraj34, 1 month ago

x is normally distributed with mean 12 and standard deviation 4. Find the
probability of the following (i)x > 20 (ii) x< 20 (iii) 0<x< 12?​

Answers

Answered by BrainlyGovind
1

see the above attachment

Attachments:
Answered by ravilaccs
0

Answer:

Given: x is normally distributed with a mean 12 and standard deviation of 4.

To find: probability of the following (i)x > 20 (ii) x< 20 (iii) 0<x< 12?​

Solution:

i)

P(X \geq 20)=P\left(z \geq \frac{20-12}{4}\right)=P(z \geq 2)=0.02275

ii) $X$ is normal distribution with a mean 12 and SD 4

\therefore \mu=12$ and $\sigma=4$

Standard normal variable

$$\begin{aligned}&amp;z=\frac{x-\mu}{\sigma} \\&amp;=\frac{x-12}{4} \\\\ii) P(X \leq 20)\end{aligned}$$

\begin{aligned}&amp;\text { When } x=20 \\&amp;z=\frac{20-12}{4}=\frac{8}{4}=2 \\&amp;v(x \leq 20)=\frac{8}{4}=2 \\&amp;P(x \leq 20)=P(z \leq 2) \\&amp;=0.5+p(0 &lt; z &lt; 2) \\&amp;=0.5+0.4772 \\&amp;=0.9772 \\\\iii) P(0 \leq x \leq 12)\end{aligned}

When $x=0$

$z=\frac{0-12}{4}\\\\=\frac{-12}{4}\\\=-3$

When $x=12$

$$\begin{aligned}&amp;z=\frac{12-12}{4}=\frac{0}{4}=0 \\&amp;P(0 \leq x \leq 12)=P(-3 \leq z \leq 0) \\&amp;=P(0 \leq z \leq 3) \\&amp;=0.4987\end{aligned}$$

Attachments:
Similar questions