Math, asked by joyFMFM, 1 year ago

x is the radius of the circle, if the diameter increased by 2 units, then write the perimeter of circle in the form of x.

Answers

Answered by Brainly9b78
0
\large{\sf{Question}}


x is the radius of the circle, if the diameter increased by 2 units, then write the perimeter of circle in the form of x.


____________________________________


\large{\sf{Answer}}


Circumference = 6.28x + 3.14

____________________________________


\huge \pink{ \mid \underline{ \overline{ \sf Brainly \: Solution :}} \mid}


 \sf Given \: \\ \sf Radius \: of \: Circle = \underline{ x } \\ \sf Diameter \: of \: Circle = 2 \times Radius \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf= \underline{2x}\\ \\ \sf \large ATQ \\ \sf New \: Diameter = Old \: Diameter + 2 \: units \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf= \underline{2x + 2} \\ \\ \mathscr{ Perimeter \: of \: Circle = Circumference \: of \: Circle } \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf= 2\pi r \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \boxed{ \sf As \: we \: know \: that \: 2r = d} \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf\: = \pi d \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf \: = 3.14 \times (2x + 2 )\\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf \: = 6.28x + 3.14


 \huge \orange{ \boxed{ \boxed{ \sf{ \therefore Circumference = 6.28x+3.14}}}}


✔✔ Hence, it is solved ✅✅.


\huge \green{ \boxed{ \boxed{ \mathscr{THANKS}}}}
Answered by daksh1760
0

hope answer is quality worthy

Attachments:
Similar questions