Math, asked by rajatsony4932, 1 year ago

X! Log7base14,Y=log14base21,Z=log21base28then 1+XyZ

Answers

Answered by sprao534
3

please see the attachment

Attachments:
Answered by KajalBarad
1

The value of 1+XYZ is \log_{28} 196

Given : X = \log_{14}7  , Y  = \log_{21}14 , Z = \log_{28}21

To Find : The value of 1+XYZ

Solution : The value of 1+XYZ is \log_{28} 196

We know the property of logarithm function is

\log_{a}b  = \frac{\log_e b}{\log_e a}

Now using the property in the above question

we have to find the find the value of 1+XYZ

where X = \log_{14}7  

Y  = \log_{21}14

Z = \log_{28}21

putting the values of X , Y and Z in the above equation

1 + ( \log_{14}7 ) ( \log_{21}14 ) ( \log_{28}21)

using the above property

we have

1 + (\frac{\log_e 7}{\log_e 14} ×  \frac{\log_e 14}{\log_e 21}   × \frac{\log_e 21}{\log_e 28})

= 1 + (\frac{\log_e 7}{\log_e 28})

= \frac{\log_e 28 + \log_e 7}{\log_e 28}   (by using the property that \log a+\log b = \log ab)

= \frac{\log_e 196}{\log_e 28}       ( by using the property that \log_{a}b  = \frac{\log_e b}{\log_e a})

= \log_{28} 196

The value of 1+XYZ is \log_{28} 196

#SPJ3





Similar questions