Math, asked by asifshek1335, 9 months ago

X=√(p +2q) -. √(p-2q) / √(p+2q)+√(p+2q) prove qx^2-px-q

Answers

Answered by sunitamishra95
0

Step-by-step explanation:

From given x=\frac{\sqrt{p+2q}+\sqrt{p-2q}}{\sqrt{p+2q}-\sqrt{p-2q}}x=

p+2q

p−2q

p+2q

+

p−2q

we have proved that qx^2-px+q=0qx

2

−px+q=0

Step-by-step explanation:

Given that x=\frac{\sqrt{p+2q}+\sqrt{p-2q}}{\sqrt{p+2q}-\sqrt{p-2q}}x=

p+2q

p−2q

p+2q

+

p−2q

To prove that qx^2-px+q=0qx

2

−px+q=0

x=\frac{\sqrt{p+2q}+\sqrt{p-2q}}{\sqrt{p+2q}-\sqrt{p-2q}}x=

p+2q

p−2q

p+2q

+

p−2q

Multiply and dividing by the conjugate \sqrt{p+2q}+\sqrt{p-2q}

p+2q

+

p−2q

we get

x=\frac{\sqrt{p+2q}+\sqrt{p-2q}}{\sqrt{p+2q}-\sqrt{p-2q}}\times \frac{\sqrt{p+2q}+\sqrt{p-2q}}{\sqrt{p+2q}+\sqrt{p-2q}}x=

p+2q

p−2q

p+2q

+

p−2q

×

p+2q

+

p−2q

p+2q

+

p−2q

x=\frac{(\sqrt{p+2q}+\sqrt{p-2q})^2}{\sqrt{p+2q}^2-\sqrt{p-2q}^2}x=

p+2q

2

p−2q

2

(

p+2q

+

p−2q

)

2

( using the properties (a+b)^2=a^2+b^2+2ab(a+b)

2

=a

2

+b

2

+2ab and (a-b)(a+b)=a^2-b^2(a−b)(a+b)=a

2

−b

2

)

x=\frac{\sqrt{p+2q}^2+\sqrt{p-2q}^2+2\sqrt{p+2q}\sqrt{p-2q}}{p+2q-(p-2q)}x=

p+2q−(p−2q)

p+2q

2

+

p−2q

2

+2

p+2q

p−2q

x=\frac{p+2q+p-2q+2\sqrt{(p+2q)(p-2q)}}{p+2q-p+2q}x=

p+2q−p+2q

p+2q+p−2q+2

(p+2q)(p−2q)

x=\frac{2p+2\sqrt{p^2-(2q)^2}}{4q}x=

4q

2p+2

p

2

−(2q)

2

( using the property (a-b)(a+b)=a^2-b^2(a−b)(a+b)=a

2

−b

2

)

x=2(\frac{p+\sqrt{p^2-4q^2}}{4q})x=2(

4q

p+

p

2

−4q

2

)

x=\frac{p+\sqrt{p^2-4q^2}}{2q}x=

2q

p+

p

2

−4q

2

(2q)x=p+\sqrt{p^2-4q^2}(2q)x=p+

p

2

−4q

2

2qx-p=\sqrt{p^2-4q^2}2qx−p=

p

2

−4q

2

Now squaring on both sides we get

(2qx-p)^2=(\sqrt{p^2-4q^2})^2(2qx−p)

2

=(

p

2

−4q

2

)

2

(2qx)^2+p^2-2(2qx)(p)=p^2-4q^2(2qx)

2

+p

2

−2(2qx)(p)=p

2

−4q

2

4q^2x^2-4qpx=-4q^24q

2

x

2

−4qpx=−4q

2

Dividing by 4q on both sides we get

\frac{4q^2x^2-4qpx}{4q}=-\frac{4q^2}{4q}

4q

4q

2

x

2

−4qpx

=−

4q

4q

2

qx^2-px=-qqx

2

−px=−q

Therefore qx^2-px+q=0qx

2

−px+q=0

Hence proved

Answered by Salmonpanna2022
1

Answer:

In attachment I have answer . ↑↑↑^

Attachments:
Similar questions