Math, asked by goyalniteshi06, 9 months ago

x=sin^3t y= cos^3t then dy/dx​

Answers

Answered by Anonymous
1

Given ,

The two functions are

 \tt x =  {sin}^{3} (t) \:  \: and \:  \: y =  {cos}^{3} (t)

Differentiating x wrt t , we get

 \tt  \implies \frac{dx}{dt}  =  \frac{d  \{ {sin}^{3} (t)  \}}{dt}

 \tt  \implies\frac{dx}{dt}  = 3  {sin}^{2} (t)  \frac{d \{sin(t) \}}{dt}

 \tt  \implies\frac{dx}{dt}  = 3  {sin}^{2} (t)  cos(t)

Similarly , Differentiating y wrt t , we get

 \tt  \implies \frac{dy}{dt}  = \frac{d  \{ {cos}^{3} (t)  \}}{dt}

\tt  \implies \frac{dy}{dt}  = 3  {cos}^{2} (t)  \frac{d \{cos(t) \}}{dt}

\tt  \implies\frac{dy}{dt}  =  - 3  {cos}^{2} (t)  sin(t)

Now ,

  \boxed{ \tt{\frac{dy}{dx}  =  \frac{ \frac{dy}{dt} }{ \frac{dx}{dt} } }}

Thus ,

\tt  \implies \frac{dy}{dx}  =   - \frac{3 {cos}^{2} (t)sin(t)}{3 {sin}^{2}(t)cos(t) }

 \tt  \implies\frac{dy}{dx}  =  -  \frac{cos(t)}{sin(t)}

 \tt  \implies\frac{dy}{dx}  =  - cot(t)

_______________ Keep Smiling ☺

Answered by sandhyamalladi121
1

Given ,

The two functions are

\tt x = {sin}^{3} (t) \: \: and \: \: y = {cos}^{3}

Differentiating x wrt t , we get

\tt \implies \frac{dx}{dt} = \frac{d \{ {sin}^{3} (t) \}}{dt}</p><p> \\ </p><p>\tt \implies\frac{dx}{dt} = 3 {sin}^{2} (t) \frac{d \{sin(t) \}}{dt} </p><p> \\ </p><p>\tt \implies\frac{dx}{dt} = 3 {sin}^{2} (t) cos(t)

Similarly , Differentiating y wrt t , we get

\tt \implies \frac{dy}{dt} = \frac{d \{ {cos}^{3} (t) \}}{dt}</p><p></p><p> \\ </p><p>\tt \implies \frac{dy}{dt} = 3 {cos}^{2} (t) \frac{d \{cos(t) \}}{dt}</p><p>	 \\ </p><p> </p><p></p><p>\tt \implies\frac{dy}{dt} = - 3 {cos}^{2} (t) sin(t)

Now ,

\boxed{ \tt{\frac{dy}{dx} = \frac{ \frac{dy}{dt} }{ \frac{dx}{dt} } }} </p><p>

Thus ,

\tt \implies \frac{dy}{dx} = - \frac{3 {cos}^{2} (t)sin(t)}{3 {sin}^{2}(t)cos(t) }</p><p>	</p><p>  \\ </p><p></p><p>\tt \implies\frac{dy}{dx} = - \frac{cos(t)}{sin(t)}</p><p>	</p><p>  \\ </p><p></p><p>\tt \implies\frac{dy}{dx} = - cot(t)

_______________ Keep Smiling ☺

Similar questions