Math, asked by kaverydevikhokha, 10 months ago

x sin x derivates function from the first principle​

Answers

Answered by Sharad001
66

Question :-

 \bf{find \: the \: derivative \: of \: x \:  \sin( x)} \\   \bf{ by \:  \: first \: principal \: }

Answer :-

\rightarrow \:  \red{ \boxed{\bf{  \frac{ dy}{dx}  = x \:  \cos(x)   + \sin(x) }} \: }

Formula used :-

Here we used first principal of differentiation,

 \implies \:  \small \boxed{ \bf{ \frac{d}{dx} m \: n\:  = m \:  \frac{d}{dx} n \:  + n \:  \frac{d}{dx} m}} \\  \\  \implies \:  \star \:  \bf{ \frac{d}{dx}  \sin(x)  =  \cos(x)  }\\  \\  \implies \:  \bf{ \star \:  \frac{d}{dx} \: x \:  = 1 }

______________________________

Solution :-

Let,

 \implies \:   \red{\bf{y \:  = x \sin(x) }}

Now differentiating on both sides with respect to "x",

 \implies \:  \bf{ \frac{dy}{dx}  =  \frac{d}{dx} \big(x \:   \sin(x)  \big) }\\

Using the given formula of first principal of differentiation .

 \rightarrow \: \:  \small  \bf{  \frac{dy}{dx}  = x \:  \frac{d}{dx}  \sin(x)  +  \sin(x)   \frac{d}{dx} \: x }  \\  \\  \rightarrow \:  \bf{ \frac{dy}{dx}  = x \:  \cos(x)  +  \sin(x)  \times 1} \\  \\  \rightarrow \:  \boxed{\bf{  \frac{ dy}{dx}  = x \:  \cos(x)   + \sin(x) }}

This is the required solution.

______________________________

Similar questions