Math, asked by brainliestuser8331, 9 months ago

X square - 4 root 2 x + 6 is equal to zero solve it by sold it by quadratic equation

Answers

Answered by bbgdu
1

Answer:

hope this helps...:-)

Attachments:
Answered by Anonymous
2

⠀⠀⠀\huge\underline{ \overline{ \bf{ \purple{QUESTION}}}}

X square - 4 root 2 x + 6 is equal to zero solve it by sold it by quadratic equation.

________________________________________

⠀⠀⠀⠀\huge\underline{ \underline{ \bf{ {  \blue{ An{ \pink{sw{ \purple{er \: : =  }}}}} }}}}

  \large\underline{ \underline{ \green{ \bold {<strong>given</strong>}}}} =  &gt;

equation:- \longrightarrow \bf {\green{ {x}^{2}  - 4 \sqrt{2} x + 6}}

method used:-compleating the square method.

\large\underline{ \underline{ \green{ \bold{solution}}}}  =  &gt;

move the constant to the right hand side and change it's sign.

 \longrightarrow \bf {\green{ {x}^{2}  - 4 \sqrt{2} x =  - 6}}

Add \rightarrow \bf {\green{ (\frac{4 \sqrt{2} }{2} )}} \\ to both the sides of the equation.

\longrightarrow \bf {\green{ {x}^{2}  - 4 \sqrt{2} x + ( \frac{4 \sqrt{2} }{2} ) {}^{2} }}

using,

\longrightarrow  \rm{ \</strong><strong>p</strong><strong>i</strong><strong>n</strong><strong>k</strong><strong> { \boxed{\fbox{ {a}^{2}  +  {b}^{2} - 2b = (a - b) {}^{2}  }}}}

\longrightarrow  \rm{ \green{(x -  \frac{4 \sqrt{2} }{2}) {}^{2}  =  - 6 + ( \frac{4 \sqrt{2} }{2} ){}^{2}   }}

\longrightarrow  \bf{ \green{(x -  \frac{4 \sqrt{2} }{ 2} ) {}^{2}  = 2}}

\longrightarrow  \bf{ \green{(x -  \frac{4 \sqrt{2} }{2} ) {}^{2}  = 2}}

⠀⠀\longrightarrow  \bf{ \boxed{ \fbox{ \pink{x =  \sqrt{2}  \: or \: x = 3 \sqrt{2} }}}}

___________________________________

⠀⠀⠀⠀hops this may help you

⠀⠀⠀⠀⠀⠀⠀⠀ \huge{ \red{ \ddot{ \smile}}}

⠀⠀⠀⠀⠀⠀⠀ \huge \blue{ \mathfrak{thanks♡</p><p>}}

Similar questions