Math, asked by uksubratadatta, 4 months ago

x
 \frac{x}{3}  +  \frac{3}{x}  = 4 \frac{1}{4}

Answers

Answered by CuteAnswerer
5

SOLUTION :

\qquad\quad{:}\longrightarrow\sf \dfrac {x}{3}+{\dfrac {3}{x}}=4 {\dfrac {1}{4}} \\  \\

\qquad\quad{:}\longrightarrow\sf \dfrac {x^2+9}{3x}={\dfrac {17}{4}}

  • By cross multiplication :

\qquad\quad{:}\longrightarrow\sf 4 (x^2+9)=17 (3x) \\  \\

\qquad\quad{:}\longrightarrow\sf 4x^2+36=51x  \\  \\

\qquad\quad{:}\longrightarrow\sf 4x^2-51x+36=0

Let the roots are \bf{\alpha} \:and \bf{\beta}

Finding \bf{\alpha}.

\qquad\quad{:}\longrightarrow\bf \alpha={\dfrac {-b+\sqrt {b^2-4ac}}{2a}} \\  \\

\qquad\quad{:}\longrightarrow\sf  \alpha = \dfrac { - ( - 51)+\sqrt{(-51)^2 - 4 \times 4 \times 36}}{2 \times 4} \\  \\

\qquad\quad{:}\longrightarrow\sf   \alpha  = \dfrac {51+\sqrt {2601 - 576}}{8} \\  \\

\qquad\quad{:}\longrightarrow\sf \alpha = \dfrac {51+\sqrt {2025}}{8} \\  \\

\qquad\quad{:}\longrightarrow\sf \alpha = \dfrac {51+45}{8} \\  \\

\qquad\quad{:}\longrightarrow\sf \alpha =  \cancel{\dfrac {96}{8}} \\  \\ \qquad\quad{:}\longrightarrow\bf \alpha =  12\\  \\

Finding \bf{\beta}.

\qquad\quad{:}\longrightarrow\bf \beta={\dfrac {-b-\sqrt {b^2-4ac}}{2a}} \\  \\

\qquad\quad{:}\longrightarrow\sf  \beta  = \dfrac { -  (- 51)-\sqrt{(-51)^2 - 4 \times 4 \times 36}}{2 \times 4} \\  \\

\qquad\quad{:}\longrightarrow\sf  \beta  = \dfrac {51-\sqrt {2601 -576 }}{8} \\  \\

\qquad\quad{:}\longrightarrow\sf \beta = \dfrac {51-\sqrt {2025}}{8} \\  \\

\qquad\quad{:}\longrightarrow\sf \beta = \dfrac {51 - 45}{8} \\  \\

\qquad\quad{:}\longrightarrow\sf \beta =  \cancel{\dfrac {6}{8}} \\  \\

\qquad\quad{:}\longrightarrow\bf \beta =  \dfrac {3}{4}\\  \\

Similar questions