Math, asked by karanjawanjiku41, 3 months ago

x(x-1)dy/dx-(x-2)y=x^2(2x-1)​

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

\frac{dy}{dx}  -  \frac{(x - 2)}{x(x - 1)}y =   \frac{x (2x - 1) }{(x - 1)}\\

Integrating factor =

 {e}^{  - \int \frac{(x - 2)}{x(x - 1)} dx}   =  {e}^{ - ( 2\int \frac{dx}{x} -  \int \frac{dx}{x  -  1}  )} \\

 =  {e}^{ - (2 ln(x) -  ln(x - 1))  }

 =  \frac{ x - 1 }{ {x}^{2} }  \\

Now, required solution =

 \frac{x - 1}{ {x}^{2} } .y =  \int \frac{x(2x - 1)}{(x - 1)} . \frac{x - 1}{ {x}^{2} } dx \\

 \implies \frac{x - 1}{ {x}^{2} } .y =  \int \frac{2x - 1}{x } dx \\

 \implies \frac{x - 1}{ {x}^{2} } .y =  2\int  dx -  \int \frac{dx}{x}  \\

  \implies\frac{x - 1}{ {x}^{2} } .y = 2x -  ln(x)  + c \\

 \implies \: y =  \frac{2 {x}^{3} }{x - 1}  -  \frac{x ^{2} ln(x) }{x - 1}  +  \frac{cx^{2} }{x - 1}  \\

Similar questions