Math, asked by Pr9876, 3 months ago

x/x+1 + x+1/x =17/4​
pls answer this question.

Answers

Answered by anindyaadhikari13
1

Answer:

Given equation,

\tt \implies \dfrac{x}{x + 1}  +  \dfrac{x + 1}{x} =  \dfrac{17}{4}

We have to find out the values of x. Here comes the solution.

\tt \implies \dfrac{ {x}^{2} +  {(x + 1)}^{2}  }{x(x + 1)}  =  \dfrac{17}{4}

\tt \implies \dfrac{ {x}^{2} + {x}^{2} + 2x + 1}{x(x + 1)}  =  \dfrac{17}{4}

\tt \implies \dfrac{2{x}^{2} + 2x + 1}{{x}^{2}  + x}  =  \dfrac{17}{4}

On transposing, we get,

\tt \implies 4(2{x}^{2} + 2x + 1)=  17( {x}^{2}  + x)

\tt \implies8{x}^{2} + 8x + 4=  17{x}^{2}  + 17x

\tt \implies 17{x}^{2} - 8 {x}^{2}   + 17x - 8x - 4 = 0

\tt \implies 9{x}^{2}   + 9x - 4 = 0

\tt \implies 9{x}^{2} - 3x + 12x - 4 = 0

\tt \implies 3x(3x - 1) + 4(3x -1)= 0

\tt \implies (3x + 4)(3x -1)= 0

\tt \implies (3x + 4) = 0 \: or \: (3x -1)= 0

\tt \implies x=  \dfrac{ - 4}{3} , \dfrac{1}{3}

So, the values of x are - 4/3 and 1/3.

Answer:

  • x = -4/3, 1/3.

•••♪

Similar questions