Math, asked by sarkarrathin535, 5 days ago

x/x+1+x+1/x= 2(1/6) Answer this question properly then I will mark u as a brainlist.

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given equation is

\rm :\longmapsto\:\dfrac{x + 1}{x}  + \dfrac{x}{x + 1}  = 2\dfrac{1}{6}

\rm :\longmapsto\:\dfrac{ {(x + 1)}^{2}  +  {x}^{2} }{x(x + 1)}  = \dfrac{12 + 1}{6}

\rm :\longmapsto\:\dfrac{ {x}^{2} + 1 + 2x  +  {x}^{2} }{ {x}^{2}  + x}  = \dfrac{12 + 1}{6}

\rm :\longmapsto\:\dfrac{ 2{x}^{2} + 1 + 2x}{ {x}^{2}  + x}  = \dfrac{13}{6}

\rm :\longmapsto\:6( {2x}^{2} + 2x + 1) = 13( {x}^{2} + x)

\rm :\longmapsto\:{12x}^{2} + 12x + 6 = 13{x}^{2} + 13x

\rm :\longmapsto\: 13{x}^{2} + 13x - 12 {x}^{2}  - 12x - 6 = 0

\rm :\longmapsto\:  {x}^{2} + x  - 6 = 0

\rm :\longmapsto\:  {x}^{2} + 3x - 2x  - 6 = 0

\rm :\longmapsto\:x(x + 3) - 2(x + 3) = 0

\rm :\longmapsto\:(x + 3)(x - 2) = 0

\rm\implies \:x =  - 3 \:  \: or \:  \: x = 2

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW:-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Answered by EmperorSoul
0

\large\underline{\sf{Solution-}}

Given equation is

\rm :\longmapsto\:\dfrac{x + 1}{x}  + \dfrac{x}{x + 1}  = 2\dfrac{1}{6}

\rm :\longmapsto\:\dfrac{ {(x + 1)}^{2}  +  {x}^{2} }{x(x + 1)}  = \dfrac{12 + 1}{6}

\rm :\longmapsto\:\dfrac{ {x}^{2} + 1 + 2x  +  {x}^{2} }{ {x}^{2}  + x}  = \dfrac{12 + 1}{6}

\rm :\longmapsto\:\dfrac{ 2{x}^{2} + 1 + 2x}{ {x}^{2}  + x}  = \dfrac{13}{6}

\rm :\longmapsto\:6( {2x}^{2} + 2x + 1) = 13( {x}^{2} + x)

\rm :\longmapsto\:{12x}^{2} + 12x + 6 = 13{x}^{2} + 13x

\rm :\longmapsto\: 13{x}^{2} + 13x - 12 {x}^{2}  - 12x - 6 = 0

\rm :\longmapsto\:  {x}^{2} + x  - 6 = 0

\rm :\longmapsto\:  {x}^{2} + 3x - 2x  - 6 = 0

\rm :\longmapsto\:x(x + 3) - 2(x + 3) = 0

\rm :\longmapsto\:(x + 3)(x - 2) = 0

\rm\implies \:x =  - 3 \:  \: or \:  \: x = 2

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW:-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Similar questions