Math, asked by dev8912, 1 year ago

x(x-y) dy=y(x +y) dx solve the homogenous eqn​

Attachments:

Answers

Answered by Anonymous
16

Here is u r ans  mate ..

Attachments:
Answered by guptasingh4564
9

The homogeneous equation is log(\frac{y}{x} )+\frac{y}{x} =-2logx-2c

Step-by-step explanation:

Given;

x(x-y)dy=y(x+y)dx

\frac{dy}{dx} =\frac{y(x+y)}{x(x-y)}___equation-1

Let, y=vx

differentiate with respect to x;

\frac{dy}{dx}=v+x\frac{dv}{dx}

Plug \frac{dy}{dx} value in equation-1;

v+x\frac{dv}{dx}=\frac{vx(x+vx)}{x(x-vx)}

v+x\frac{dv}{dx}=\frac{v(1+v)}{(1-v)}

x\frac{dv}{dx}=\frac{(v+v^{2} )}{(1-v)}-v

x\frac{dv}{dx}=\frac{(v+v^{2} -v+v^{2} )}{(1-v)}

x\frac{dv}{dx}=\frac{2v^{2}}{(1-v)}

\frac{1-v}{2v^{2} } dv=\frac{dx}{x}

Integrating on both sides;

\int \frac{1-v}{2v^{2} } dv=\int \frac{dx}{x}

By integrating of \int \frac{1-v}{2v^{2} } dv the value will be come -\frac{1}{2}log(v)-\frac{1}{2}v

So,

-\frac{1}{2}log(v)-\frac{1}{2}v=logx+c  where c=constant

log(v)+v=-2logx-2c

log(\frac{y}{x} )+\frac{y}{x} =-2logx-2c    (∵v=\frac{y}{x} )

So the homogeneous equation is log(\frac{y}{x} )+\frac{y}{x} =-2logx-2c

Similar questions