x+y = 12, xy = 27 find x^3 + y^3
Answers
Answered by
12
applying the identity
(x+y)^3=x3+y3+3xy(x+y)
(12)3=x3+y3+3×27(12)
1728=x3+y3+972
1728-972=x3+y3
756=x3+y3
(x+y)^3=x3+y3+3xy(x+y)
(12)3=x3+y3+3×27(12)
1728=x3+y3+972
1728-972=x3+y3
756=x3+y3
Answered by
10
⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
![= > given \: \\ = > x + y \: = 12 \\ = > xy = 27 \\ \\ to \: find \: {x}^{3} + {y}^{3} \\ \\ solution \: \\ \\ = > {(x + y)}^{3} = {x}^{3} + {y}^{3} + 3xy(x + y) \\ \\=> (12 )^3 = > { x }^{3} + {y}^{3} + 3 \times 27 \times 12 \\ \\ => 1728 = > {x}^{3} + {y}^{3} + 972 = > given \: \\ = > x + y \: = 12 \\ = > xy = 27 \\ \\ to \: find \: {x}^{3} + {y}^{3} \\ \\ solution \: \\ \\ = > {(x + y)}^{3} = {x}^{3} + {y}^{3} + 3xy(x + y) \\ \\=> (12 )^3 = > { x }^{3} + {y}^{3} + 3 \times 27 \times 12 \\ \\ => 1728 = > {x}^{3} + {y}^{3} + 972](https://tex.z-dn.net/?f=+%3D+%26gt%3B+given+%5C%3A+%5C%5C+%3D+%26gt%3B+x+%2B+y+%5C%3A+%3D+12+%5C%5C+%3D+%26gt%3B+xy+%3D+27+%5C%5C+%5C%5C+to+%5C%3A+find+%5C%3A+%7Bx%7D%5E%7B3%7D+%2B+%7By%7D%5E%7B3%7D+%5C%5C+%5C%5C+solution+%5C%3A+%5C%5C+%5C%5C+%3D+%26gt%3B+%7B%28x+%2B+y%29%7D%5E%7B3%7D+%3D+%7Bx%7D%5E%7B3%7D+%2B+%7By%7D%5E%7B3%7D+%2B+3xy%28x+%2B+y%29+%5C%5C+%5C%5C%3D%26gt%3B+%2812+%29%5E3+%3D+%26gt%3B+%7B+x+%7D%5E%7B3%7D+%2B+%7By%7D%5E%7B3%7D+%2B+3+%5Ctimes+27+%5Ctimes+12+%5C%5C+%5C%5C+%3D%26gt%3B+1728+%3D+%26gt%3B+%7Bx%7D%5E%7B3%7D+%2B+%7By%7D%5E%7B3%7D+%2B+972)
=> x^3 + y^3 = 1728 - 972
=> x^3 + y^3 = 756
⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
=> x^3 + y^3 = 1728 - 972
=> x^3 + y^3 = 756
⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
Similar questions