Math, asked by moharsingh1, 1 year ago

X + Y = 13 equal root x + root y

Answers

Answered by dk607821
2

Pls fast solve this question

Attachments:
Answered by gratefuljarette
1

Proved that X + Y = 13 is equal root x + root y which is 13

Given:  

X + Y = 13 equal root x + root y

To prove:

\sqrt{x}+\sqrt{y}=13

Solution:  

As X + Y = 13, we can say that

Y = 13 - X ---------- (1)

\sqrt{x}+\sqrt{y}=13\\\sqrt{x}+\sqrt{x}-13=13 (As per equation 1)

Squaring on both the sides,

\begin{array}{c}{x+(x-13)+2 \sqrt{x}(x-13)=169} \\ {x+x-13+2 \sqrt{x}(x-13)=169} \\ {2 x-182=-2 \sqrt{x}(x-13)} \\ {x-91=\sqrt{x}(x-13)}\end{array}

Squaring on both the sides,

\begin{array}{l}{(\mathrm{x}-91)^{2}=\mathrm{x}^{2}-13 \mathrm{x}} \\ {\mathrm{x}^{2}+(91)^{2}-182 \mathrm{x}=\mathrm{x}^{2}-13 \mathrm{x}} \\ {169 \mathrm{x}=91 \times 91}\end{array}

\begin{array}{l}{\mathrm{x}=\frac{91 \times 91}{169}} \\ {\mathrm{X}=\frac{91 \times 91}{13 \times 13}} \\ {\mathrm{x}=7 \times 7=49}\end{array}

Now, Y = 13 - X  

= 13 - 49

= -36.

Therefore, x + y = 49 + (-36) = 13  

and  root x + root y = \sqrt{49}+\sqrt{-36} = 7 + 6 = 13

Hence, proved.

Similar questions