Math, asked by khannaankit5558, 1 year ago

X+y=2z find x/x-z + z/y-z

Answers

Answered by MaheswariS
17

\textbf{Given:}

x+y=2z

\implies\;x+y=z+z

\implies\;x-z=z-y

\text{Now}

\frac{x}{x-z}+\frac{z}{y-z}

\implies\frac{x}{x-z}+\frac{z}{-(z-y)}

\implies\frac{x}{x-z}-\frac{z}{z-y}

\implies\frac{x}{x-z}-\frac{z}{x-z}

\implies\frac{x-z}{x-z}

\implies\;1

\therefore\boxed{\bf\frac{x}{x-z}+\frac{z}{y-z}=1}

Answered by waqarsd
6

Answer:

1

Step-by-step explanation:

x+y=2z\\\\x-z=z-y\\\\\\\frac{x-z}{z-y}=1\\\\\frac{x}{z-y}-\frac{z}{z-y}=1\\\\sub\;\;z-y=x-z\;\;in\;\;the\;\;first\;\;term\\\\\frac{x}{x-z}+\frac{z}{-(z-y)}=1\\\\\frac{x}{x-z}+\frac{z}{y-z}=1\\\\

Hope it Helps

Similar questions