Math, asked by miracle8910, 10 months ago

(x+y) ^3-(x-y)^3 can be factorizatized as?

Answers

Answered by mysticd
0

 We \:know \:the \: Algebraic \: Identity

 \boxed { \pink { a^{3} - b^{3} = (a-b)^{3} + 3ab(a-b) }}

 Here, a = x + y , \: and \: b = x - y

 Now , (x+y)^{3} - (x-y)^{3} \\= [(x+y)-(x-y)]^{3} + 3(x+y)(x-y)[(x+y)-(x-y)] \\= ( x+y-x+y)^{3} + 3(x^{2} -y^{2} )( x+y-x+y) \\= (2y)^{3} +3(x^{2}-y^{2})\times 2y \\= 2y[ (2y)^{2} +3(x^{2} -y^{2} )] \\= 2y[ 4y^{2} + 3x^{2}-3y^{2} ]\\= 2y(  3x^{2} + y^{2})

Therefore.,

 \red{ Factors \:of \: (x+y)^{3} - (x-y)^{3}} \\\green { =2y(  3x^{2} + y^{2} )}

•••♪

Similar questions