(x-y)³=x³-y³-3xy(x-y)=x³-3x²y+3xy²-y³
prove that
Answers
Answered by
5
Answer:
(x+y)³ = x³ + y³ + 3x²y + 3xy²
(x-y)³ = x³ - y³ - 3x²y + 3xy²
thus
(x+y)³ + (x-y)³ + x³ - y³
=(x³ + y³ + 3x²y + 3xy²) + (x³ - y³ - 3x²y + 3xy²) + x³ - y³
=x³ + y³ + 3x²y + 3xy² +x³ - y³ - 3x²y + 3xy² + x³ - y³
= 3x³ - y³ + 6xy²
Step-by-step explanation:
Similar questions