Math, asked by sreen24, 9 months ago

(x+y)-(3x+2y)i=5+2i​

Answers

Answered by Anonymous
9

Correct Question:

\sf{(x+y)-(3x+2y)i=5+2i, \ find \ the \ value}

\sf{of \ x \ and \ y.}

_________________________________

Answer:

\sf{The \ values \ of \ x \ and \ y \ are \ -12 \ and \ 17}

\sf{respectively. }

Given:

\sf{(x+y)-(3x+2y)i=5+2i}

To find:

\sf{The \ values \ of \ x \ and \ y.}

Solution:

\sf{(x+y)-(3x+2y)i=5+2i}

\sf{On \ equating \ real \ and \ imaginary \ parts}

\sf{we \ get,}

\sf{x+y=5...(1)}

\sf{-(3x+2y)=2}

\sf{\therefore{3x+2y=-2...(2)}}

\sf{Multiply \ equation(1) \ by \ 2, \ we \ get}

\sf{2x+2y=10...(3)}

\sf{Subtract \ equation(3) \ from \ equation(2), \ we \ get}

\sf{3x+2y=-2}

\sf{-}

\sf{2x+2y=10}

__________________

\boxed{\sf{x=-12}}

\sf{Substitute \ x=-12 \ in \ equation(1), \ we \ get}

\sf{-12+y=5}

\boxed{\sf{\therefore{y=17}}}

\sf\purple{\tt{\therefore{The \ values \ of \ x \ and \ y \ are \ -12 \ and \ 17}}}

\sf\purple{\tt{respectively. }}


Anonymous: awesome :)
Similar questions