Math, asked by zammam8892, 8 months ago

(x+y)=5 and xy=4 then x3+y3 is equal to

Answers

Answered by Anonymous
4

Solution:-

Given :-

=> ( x + y ) = 5

=> xy = 4

To find

=> x³ + y³

Using this identity

( x + y )³ = x³ + y³ + 3xy( xy )

Now put the value

( x + y )³ = x³ + y³ + 3xy( x + y )

(5)³ = x³ + y³ + 3 × 4 ( 5 )

125 = x³ + y³ + 3 × 20

125 = x³ + y³ + 60

x³ + y³ = 125 - 60

x³ + y³ = 65

Answer:- 65

Some identities

=> ( a + b )² = a² + b² + 2ab

=> ( a - b )² = a² + b² - 2ab

=> ( a² - b² ) = ( a - b )(a + b )

=> ( a + b )³ = a³ + b³ + 3ab( a + b )

=> ( a - b )³ = a³ - b³ - 3ab( a - b )

Answered by gugan64
9

Answer:

 \huge \sf { \underline{given \ \: : }}

 \bull  \bf(x + y) = 5

 \bull \bf( xy )= 4

\huge \sf { \underline{ to \: find\ \: : }}

 \bf \bull the \: value \: of \:  {x}^{3}  \: and \:  {y}^{3}

\huge \sf { \underline{let \: us \: solve \ \: : }}

 \bf {(x + y)}^{3}  =  {x}^{3}  +  {y}^{3}  + 3xy(x + y)

 \bf \to {5}^{3}  =  {x}^{3}  +  {y}^{3}  + 3 \times (4  \times  5)

 \bf \to125 =  {x}^{3}  +  {y}^{3}  + 3 \times (20)

 \bf \to  125 = { x }^{3}  +  {y}^{3}  + 60

 \bf \to {x}^{3}  +  {y}^{3}  = 125 - 60

 \boxed{\red{\sf{{ {{x}^{3} +  {y}^{3}  = 65 }}}}}

 \huge \sf { \underline{Identity\:used\ \: : }}

 \bf {(x + y)}^{3}  =  {x}^{3}  +  {y}^{3}  + 3xy(x + y)

Similar questions