x-y = 7 x^3-y^3=1331 find xy and x^2 + y^2
please answer fast
Answers
Answer:
1. xy = 47.04 (approx.)
2. x² + y² = 143.08 (approx.)
Step-by-step-explanation:
We have given that,
- x - y = 7
- x³ - y³ = 1331
We have to find,
- xy
- x² + y²
We know that,
( x - y )³ = x³ - 3x²y + 3xy² - y³ - - [ Identity ]
⇒ ( 7 )³ = x³ - y³ - 3x²y + 3xy²
⇒ 343 = 1331 - 3xy ( x - y )
⇒ 343 = 1331 - 3xy × 7
⇒ 343 = 1331 - 21xy
⇒ 21xy = 1331 - 343
⇒ 21xy = 988
⇒ xy = 988 / 21
⇒ xy = 47.047
⇒ xy = 47.04 - - ( 1 ) (approx.)
Now,
( x - y )² = x² - 2xy + y² - - [ Identity ]
⇒ ( 7 )² = x² + y² - 2 × 47.04 - - [ From ( 1 ) ]
⇒ 49 = x² + y² - 2 × 47.04
⇒ 49 = x² + y² - 94.08
⇒ 49 + 94.08 = x² + y²
⇒ x² + y² = 143.08 (approx.)
─────────────────────
Additional Information:
Some Algebraic Identities:
1. ( a + b )² = a² + 2ab + b²
2. ( a - b )² = a² - 2ab + b²
3. ( a + b )³ = a³ + 3a²b + 3ab² + b³
4. ( a - b )³ = a³ - 3a²b + 3ab² - b³
5. a² - b² = ( a + b ) ( a - b )
6. a² + b² = ( a + b )² - 2ab
7. a³ + b³ = ( a + b )³ - 3ab ( a + b )
8. a³ - b³ = ( a - b ) ( a² + ab + b² )