Math, asked by mallikachakraborty9, 1 year ago

x-y=a+b,ax+by=a2-b2 in cross multiplication method

Answers

Answered by ashishks1912
5

GIVEN :

The equations are x-y=a+b, ax+by=a^2-b^2 in cross multiplication method

TO FIND :

The values of x and y from the given equations.

SOLUTION :

Given equations are x-y=a+b, ax+by=a^2-b^2

It can be written as

x-y-(a+b)=0\hfill (1)

ax+by-(a^2-b^2)=0\hfill (2)

By using the cross multiplication method:

The formula for the equations a_1x+b_1y+c_1=0 and a_2x+b_2y+c_2=0 is given by

\frac{x}{b_1c_2-b_2c_1}=\frac{y}{c_1a_2-c_2a_1}=\frac{1}{a_1b_2-a_2b_1}

Here a_1=1 b_1=-1 and c_1=-(a+b)

a_2=a b_2=b and c_2=-(a^2-b^2)

Substitute the values in formula we have

\frac{x}{-1(-(a^2-b^2))-b(-(a+b))}=\frac{y}{(-(a+b))a-(-(a^2-b^2))1}=\frac{1}{1(b)-a(-1)}

\frac{x}{a^2-b^2+b(a+b)}=\frac{y}{(-(a+b))a+(a^2-b^2)}=\frac{1}{b+a}

\frac{x}{a^2-b^2+ab+b^2}=\frac{y}{-a^2-ba+a^2-b^2}=\frac{1}{b+a}

\frac{x}{a^2+ab}=\frac{y}{-ba-b^2}=\frac{1}{b+a}

Equating \frac{x}{a^2+ab}=\frac{1}{b+a}

\frac{x}{a(a+b)}=\frac{1}{b+a}

x=\frac{a(a+b)}{b+a}

⇒ x=a

Equating \frac{y}{-ba-b^2}=\frac{1}{b+a}

\frac{y}{-b(a+b)}=\frac{1}{b+a}

y=\frac{-b(a+b)}{b+a}

⇒ y=-b

∴ the values of x and y from the given equations by using Cross Multiplication method are x=a and y=-b  

Similar questions