Math, asked by yuvidhaliwal2207, 2 months ago

X+y=a+b.
ax-by=a²-b²
It's urgent​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given pair of linear equations are

\rm :\longmapsto\:x + y = a + b -  -  -  - (1)

and

\rm :\longmapsto\:ax - by =  {a}^{2} -  {b}^{2}  -  -  -  - (2)

To solve these pair of equations, we use method of Eliminations.

On multiply equation (1) by b, we get

\rm :\longmapsto\:bx + by = ab +  {b}^{2}  -  -  -  - (3)

On adding equation (2) and (3), we get

\rm :\longmapsto\:bx + ax = ab +  {a}^{2}

\rm :\longmapsto\:x(a + b) = a(a + b)

\bf\implies \:x = a -  -  - (4)

On Substituting the value of x in equation (1),

\rm :\longmapsto\:a + y = a + b

\bf\implies \:y = b -  -  - (5)

Hence,

Solution Set of equations,

\rm :\longmapsto\:x + y = a + b

and

\rm :\longmapsto\:ax - by =  {a}^{2} -  {b}^{2}

is

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underbrace{ \boxed{ \bf \: x = a \:  \:  \: and \:  \:  \: y = b}}

Alternative Method :-

Method of Substitution :

Given equation (1)

\rm :\longmapsto\:x + y = a + b

\rm :\longmapsto\: y = a + b - x -  -  - (1)

Given equation (2) is

\rm :\longmapsto\:ax - by =  {a}^{2} -  {b}^{2}

On substituting the value of y, we get

\rm :\longmapsto\:ax - b(a + b - x) =  {a}^{2} -  {b}^{2}

\rm :\longmapsto\:ax - ba  -  {b}^{2} + bx =  {a}^{2} -  {b}^{2}

\rm :\longmapsto\:ax - ba  +  bx =  {a}^{2}

\rm :\longmapsto\:ax + bx =  {a}^{2}  + ab

\rm :\longmapsto\:x(a + b) = a(a + b)

\bf\implies \:x = a

On substituting the value of x = a in equation (1), we get

\rm :\longmapsto\: y = a + b - a

\bf\implies \:y = b

Hence,

Solution set is

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underbrace{ \boxed{ \bf \: x = a \:  \:  \: and \:  \:  \: y = b}}

Similar questions