Math, asked by niharika158242, 11 months ago

x/y=sinA/sinB then x. cotA+y.cot B /x+y​

Answers

Answered by MaheswariS
0

Answer:

\frac{x.cotA+y.cotB}{x+y}=cot(\frac{A+B}{2})

Step-by-step explanation:

Given:

\frac{x}{y}=\frac{sinA}{sinB}

\implies\:\frac{x}{sinA}=\frac{y}{sinB}=k(say)

\implies\:x=k\:sinA

y=k\:sinB

Now,

\frac{x.cotA+y.cotB}{x+y}

=\frac{x.\frac{cosA}{sinA}+y.\frac{cosB}{sinB}}{k\:sinA+k\:sinB}

=\frac{k.cosA+k.cosB}{k(sinA+sinB)}

=\frac{k(cosA+cosB)}{k(sinA+sinB)}

=\frac{cosA+cosB}{sinA+sinB}

=\frac{2\:cos(\frac{A+B}{2})\:cos(\frac{A-B}{2})}{2\:sin(\frac{A+B}{2})\:cos(\frac{A-B}{2})}

=\frac{cos(\frac{A+B}{2})}{sin(\frac{A+B}{2})}

\implies\frac{x.cotA+y.cotB}{x+y}=cot(\frac{A+B}{2})

Similar questions