Math, asked by sahalms123, 1 year ago

(x+y)whole square × (x-y)whole square

Answers

Answered by Anonymous
102
 \underline{\large\bf{\mathfrak{Hello!}}}

 = > {(x + y)}^{2} \times {(x - y)}^{2} \\ \\ = > ( {x}^{2} + {y}^{2} + 2xy)( {x}^{2} + {y}^{2} - 2xy) \\ \\ = > {x}^{4} + {x}^{2} {y}^{2} - 2 {x}^{3} y + {y}^{4} + {x}^{2} {y}^{2} - 2x {y}^{3} + 2 {x}^{3}y + 2x {y}^{3} - 4 {x}^{2} {y}^{2} \\ \\ = > {x}^{4} + {y}^{4} + 2 {x}^{2} {y}^{2} - 4 {x}^{2} {y}^{2} \\ \\ = > {x}^{4} + {y}^{4} - 2 {x}^{2} {y}^{2} \\ \\ = > {( {x}^{2} - {y}^{2} ) }^{2} \\ \\ = > {[(x - y)(x + y)]}^{2}

\boxed{{[(x - y)(x + y)]}^{2} }

<marquee> Hope this helps...:)

riya3960: hiii jessa
riya3960: goodmorning
riya3960: hiiii
riya3960: jessabelle
Answered by Anonymous
83
 <b> Answer :

 = > {(x + y)}^{2} \times {(x - y)}^{2}

 = > ( {x}^{2} + {y}^{2} + 2xy)( {x}^{2} + {y}^{2} - 2xy)

 = > {x}^{4} + {x}^{2} {y}^{2} + {2x}^{3}y + {y}^{4} + {x}^{2} {y}^{2} - {2xy}^{3} + {2x}^{3}y + {2xy}^{3} - {4x}^{2} {y}^{2}

 = > {x}^{4} + {y}^{4} - {2x}^{2} {y}^{2} - {4x}^{2} {y}^{2}

 = > {x}^{4} + {y}^{4} - {2x}^{2} {y}^{2}

 = > {( {x}^{2} - {y}^{2} ) }^{2}

 = > {[(x - y)(x + y)]}^{2}
Similar questions