Math, asked by kumaripalak200107, 4 months ago

(x-y)(x+y)+(y-z)(y+z)+(z-x)(z+x)​

Answers

Answered by TheCardboardBox
1

Question:

(x - y)(x + y) + (y - z)(y + z) + (z - x)(z + x)

Answer:

We know,

(a + b)(a - b) =  {a}^{2}  -  {b}^{2}

So, by implementing this identity, we get

(x - y)(x + y) =  {x}^{2}  -  {y}^{2}  \\ (y -z )(y + z) =  {y}^{2}  -  {z}^{2} \\ (z- x)(z +x ) =  {z}^{2}  -  {x}^{2}

Then we put these values in the equation.

 =  {x}^{2}  -  {y}^{2}  +  {y}^{2}  -  {z}^{2}   +  {z}^{2}  -  {x}^{2}  \\  = {x}^{2}  -  {x}^{2}  +  {y}^{2}  -  {y}^{2}   +  {z}^{2}  -  {z}^{2} \\  = 0

Similar questions