Math, asked by shivagooty, 1 year ago

x+y+z=9.2x+5y+7z=52.2x+y-z=0

Answers

Answered by MarkAsBrainliest
7
\bold{Answer :}

Given,

x + y + z = 9 ...(i)

2x + 5y + 7z = 52 ...(ii)

2x + y - z = 0 ...(iii)

Now, {(i) × 2} ⇒

2x + 2y + 2z = 18 ...(iv)

Then, {(ii) - (iii)} ⇒

(2x + 5y + 7z) - (2x + 2y + 2z) = 52 - 18

⇒ 2x + 5y + 7z - 2x - 2y - 2z = 34

⇒ 3y + 5z = 34 ...(v)

Again, {(iv) - (iii)} ⇒

(2x + 2y + 2z) - (2x + y - z) = 18 - 0

⇒ 2x + 2y + 2z - 2x - y + z = 18

⇒ y + 3z = 18

⇒ 3 (y + 3z) = 3 (18)

⇒ 3y + 9z = 54 ...(vi)

Also, {(vi) - (v)} ⇒

(3y + 9z) - (3y + 5z) = 54 - 34

⇒ 3y + 9z - 3y - 5z = 20

⇒ 4z = 20

⇒ z = 20/4

⇒ z = 5

Putting z = 5 in (v), we get

3y + 5 (5) = 34

⇒ 3y + 25 = 34

⇒ 3y = 34 - 25

⇒ 3y = 9

⇒ y = 9/3

⇒ y = 3

Now, putting y = 3 and z = 5 in (i), we get

x + 3 + 5 = 9

⇒ x + 8 = 9

⇒ x = 9 - 8

⇒ x = 1

∴ the required solution be

\textbf{x = 1, y = 3 and z = 5}

#\bold{MarkAsBrainliest}
Answered by vaibhavakrishna321
0

Answer:

x=1, y=3, z=5

Step-by-step explanation:

Given,

x + y + z = 9 ...(i)

2x + 5y + 7z = 52 ...(ii)

2x + y - z = 0 ...(iii)

Now, {(i) × 2} ⇒

2x + 2y + 2z = 18 ...(iv)

Then, {(ii) - (iii)} ⇒

(2x + 5y + 7z) - (2x + 2y + 2z) = 52 - 18

⇒ 2x + 5y + 7z - 2x - 2y - 2z = 34

⇒ 3y + 5z = 34 ...(v)

Again, {(iv) - (iii)} ⇒

(2x + 2y + 2z) - (2x + y - z) = 18 - 0

⇒ 2x + 2y + 2z - 2x - y + z = 18

⇒ y + 3z = 18

⇒ 3 (y + 3z) = 3 (18)

⇒ 3y + 9z = 54 ...(vi)

Also, {(vi) - (v)} ⇒

(3y + 9z) - (3y + 5z) = 54 - 34

⇒ 3y + 9z - 3y - 5z = 20

⇒ 4z = 20

⇒ z = 20/4

⇒ z = 5

Putting z = 5 in (v), we get

3y + 5 (5) = 34

⇒ 3y + 25 = 34

⇒ 3y = 34 - 25

⇒ 3y = 9

⇒ y = 9/3

⇒ y = 3

Now, putting y = 3 and z = 5 in (i), we get

x + 3 + 5 = 9

⇒ x + 8 = 9

⇒ x = 9 - 8

⇒ x = 1

∴ the required solution be

\textbf{x = 1, y = 3 and z = 5}x = 1, y = 3 and z = 5

Similar questions