Accountancy, asked by uzma08588, 9 months ago

X,Y,Z,W are 4:3:2:1 .Z acquire 1/5 from X. Y acquire 1/5 from X and W equally . Find new ratio and sacrifice ratio​

Answers

Answered by Anonymous
0

Answer:

the net worth is 67billion

Explanation:

please Mark as brainliest

Answered by pulakmath007
30

\displaystyle\huge\red{\underline{\underline{Solution}}}

Ratio of X, Y, Z, W are

 = 4 : 3 :  2:  1\:

So

 \displaystyle \:  \sf{The \:  share \:  of \:   X =  \frac{4}{10} }

 \displaystyle \:  \sf{The \:  share \:  of \:   Y =  \frac{3}{10} }

 \displaystyle \:  \sf{The \:  share \:  of \:   Z =  \frac{2}{10} }

 \displaystyle \:  \sf{The \:  share \:  of \:   W =  \frac{1}{10} }

 \displaystyle \:  \sf{Z \: acquires \:  \frac{1}{5} \: from\: X  }

So

 \displaystyle \:  \sf{Z \: acquires \:  \: from\: X =  \bigg( \:  \frac{4}{10}  \times  \frac{1}{5}  \bigg)  =  \frac{4}{50}  }

In case of Gaining

 \sf{ \: New \:  Ratio = Old \:  Ratio  +  Gaining  \: Ratio \: }

So

 \displaystyle \:  \sf{ New  \: share \:  of  \: \:  Z\: =  \frac{2}{10}   +  \frac{4}{50}  = \frac{14}{50}  }

 \displaystyle \:  \sf{Y \: acquires \:  \frac{1}{5} \: from\: X  \: and \:W \: equally  }

SO

 \displaystyle \:  \sf{Y \: acquires \:  \: from\: X =  \bigg( \:  \frac{4}{10}  \times  \frac{1}{5}  \bigg)  =  \frac{4}{50}  }

 \displaystyle \:  \sf{Y \: acquires \:  \: from\: W =  \bigg( \:  \frac{1}{10}  \times  \frac{1}{5}  \bigg)  =  \frac{1}{50}  }

 \sf{ \: New \:  Ratio = Old \:  Ratio  +  Gaining  \: Ratio \: }

 \displaystyle \:  \sf{ New  \: share \:  of  \: \:  Y\: =  \frac{3}{10}   +  \frac{4}{50}   +  \frac{1}{50}  = \frac{14}{50}  }

In case of Sacrificing

 \sf{ \: New \:  Ratio = Old \:  Ratio   -   Sacrificing  \: Ratio \: }

 \displaystyle \:  \sf{ New  \: share \:  of  \: \:  X\: =  \frac{4}{10}   -   \frac{4}{50}  - \frac{4}{50}  = \frac{12}{50}  }

 \displaystyle \:  \sf{ New  \: share \:  of  \: \:  W\: =  \frac{1}{10}  -  \frac{1}{50}  = \frac{4}{50}  }

RESULT

Hence the new ratio of X, Y, Z, W are

 \displaystyle \:  =  \frac{12}{50}  : \frac{20}{50} :  \frac{14}{50}:  \frac{4}{50}\:

 = 6: 10 :  7:  2\:

Here X & W sacrifices

So the Sacrificing ratio of X and W are

 \displaystyle \:  =  \frac{8}{50}  : \frac{1}{50}

 = 8 : 1

Similar questions