(x+y+z)whole square+(x-y+z)whole square+(x+y-z) whole square
Answers
Answered by
0
(x+y+z)² + (x+y+z)² + (x+y+z)²
(identity to use : (a+b+c)² = a² + b² + c² + 2ab + 2bc + 2ac )
by using this identity,
(x+y+z)² + (x+y+z)² + (x+y+z)²
= (x² + y² + z² + 2(x)(z) + 2(y)(z) + 2(x)(y) ) + (x² + y² + z² + 2(x)(z) + 2(y)(z) + 2(x)(y) ) + (x² + y² + z² + 2(x)(z) + 2(y)(z) + 2(x)(y) )
= (x² + y² + z² + 2xz + 2yz + 2xy) + (x² + y² + z² + 2xz + 2yz + 2xy) + (x² + y² + z² + 2xz + 2yz + 2xy)
= x² + y² + z² + 2xz + 2yz + 2xy + x² + y² + z² + 2xz + 2yz + 2xy + x² + y² + z² + 2xz + 2yz + 2xy
= x²+ x²+ x² + y² + y² + y² + z² + z² + z² + 2xz + 2xz + 2xz + 2yz + 2yz + 2yz + 2xy + 2xy + 2xy
= 3x² + 3y² + 3z² + 6xz + 6yz + 6xy
= 3(x² + y² + z²) + 6(xz + yz + xy)
Hope it helps!
have a great day!
Similar questions