Math, asked by Therocks2374, 1 year ago

| x y z |
| x-y y-z z-x | =x³+y³+z³-3xyz
| y+z z+x x+y |
,prove it using theorems

Answers

Answered by MaheswariS
0

Answer:

\bf\left|\begin{array}{ccc}x&y&z\\x-y&y-z&z-x\\y+z&z+x&x+y\end{array}\right|=x^3+y^3+z^3-3xyz

Step-by-step explanation:

\left|\begin{array}{ccc}x&y&z\\x-y&y-z&z-x\\y+z&z+x&x+y\end{array}\right|

=\left|\begin{array}{ccc}x&y&z\\-y&-z&-x\\y+z&z+x&x+y\end{array}\right| R_2\implies\:R_2-R_1

=\left|\begin{array}{ccc}x&y&z\\-y&-z&-x\\z&x&y\end{array}\right| R_3\implies\:R_3+R_2

Expanding along first row

=x(-yz+x^2)-y(-y^2+xz)+z(-xy+z^2)

=-xyz+x^3+y^3-xyz-xyz+z^3

=x^3+y^3+z^3-3xyz

\implies\:\boxed{\bf\left|\begin{array}{ccc}x&y&z\\x-y&y-z&z-x\\y+z&z+x&x+y\end{array}\right|=x^3+y^3+z^3-3xyz}

Similar questions