Math, asked by bindraaaliyah8, 3 days ago

(x + y - z) + x + (z+ x- y) y- (x + y - 2)z​

Answers

Answered by archanagotis
1

(x+y)

2

zx

zy

zx

(z+y)

2

xy

zy

xy

(z+x)

2

=2xyz(x+y+z)

3

.

Easy

Solution

verified

Verified by Toppr

LHS :

(x+y)

2

zx

zy

zx

(z+y)

2

xy

zy

xy

(z+x)

2

Applying R

1

→zR

1

,R

2

→xR

2

,R

3

→yR

3

, we get,

=

xyz

1

z(x+y)

2

zx

2

zy

2

z

2

x

x(z+y)

2

xy

2

z

2

y

x

2

y

y(z+x)

2

Applying C

1

z

1

C

1

,C

2

x

1

C

2

,C

3

y

1

C

3

, we get,

=

(x+y)

2

x

2

y

2

z

2

(z+y)

2

y

2

z

2

x

2

(z+x)

2

Applying C

1

→C

1

−C

3

,C

2

→C

2

−C

3

, we get,

=(x+y+z)

2

x+y−z

0

y−z−x

0

z+y−x

y−z−x

z

2

x

2

(z+x)

2

Applying R

3

→R

3

−(R

1

+R

2

), we get,

=(x+y+z)

2

x+y−z

0

−2x

0

z+y−x

−2z

z

2

x

2

2xz

Applying C

1

→C

1

+

z

1

C

3

,C

2

→C

2

+

x

1

C

3

, we get,

=(x+y+z)

2

x+y

z

x

2

0

x

z

2

z+y

0

z

2

x

2

2xz

=(x+y+z)

2

[2xz(xz+xy+yz+y

2

−xz)]

=(x+y+z)

2

[2xyz(x+y+z)]

=2xyz(x+y+z)

3

= RHS

Solve any question of Determinants with:-

Patterns of problems

Patterns of problems

>

Was this answer helpful?

upvote

8

downvote

0

SIMILAR QUESTIONS

star-struck

Using properties of determinants prove that :

a+b+c

−c

−b

−c

a+b+c

−a

−b

−a

a+b+c

=2(a+b)(b+c)(c+a)

Medium

View solution

>

Prove that:

1

x

yz

1

y

zx

1

z

xy

=(x−y)(y−z)(z−x).

Similar questions