Math, asked by abhradeepde, 2 months ago

(x+yw+zw^2)^2+(xw+yw^2+z)^2+(xw^2+y+zw)^2=0,
prove it if w is a non real cube root of unity.​

Answers

Answered by user0888
14

Question

\omega is the imaginary solution to the equation of x^{3}=1. Prove that (x+y\omega +z\omega ^{2})^{2}+(x\omega +y\omega ^{2}+z)^{2}+(x\omega ^{2}+y+z\omega )^{2}=0.

Hint

It is a polynomial identity.

(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2(xy+yz+zx)

The key to the problem is writing Y,Z in terms of X.

Solution

Let each term be X=x+y\omega +z\omega ^{2}, Y=x\omega +y\omega ^{2}+z, and Z=x\omega ^{2}+y+z\omega.

We observe that Y=\omega X and Z=\omega Y.

\implies Y=\omega X, Z=\omega ^{2}X

\implies X+Y+Z=(\omega ^{2}+\omega +1)X=0.

By identity, X^{2}+Y^{2}+Z^{2}=-2(XY+YZ+ZX), so X^{2}+Y^{2}+Z^{2}=-2(\omega X^{2}+\omega ^{3}X^{2}+\omega ^{2}X^{2}).

\implies X^{2}+Y^{2}+Z^{2}=-2(\omega ^{3}+\omega ^{2}+\omega )X^{2}

\implies X^{2}+Y^{2}+Z^{2}=-2(\omega ^{2}+\omega +1)X^{2}

\implies X^{2}+Y^{2}+Z^{2}=0

\therefore (x+y\omega +z\omega ^{2})^{2}+(x\omega +y\omega ^{2}+z)^{2}+(x\omega ^{2}+y+z\omega )^{2}=0 \blacksquare

Similar questions