Math, asked by rohitagrawal9898, 4 months ago

X
Z
If
y
3x-y-z 3y-z-x 32-x- y
each ratio is equal to 1.
and x+y +z = 0 then show that the value of​

Answers

Answered by padmavathi7
1

Answer:

3x-y-z=y/3y-z-x=z/3z-x-y and x+y+z≠0 then show that the value of each ratio is equal to 1

Concept used:

\boxed{\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\:\implies\:\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=\frac{a+b+c}{x+y+z}}

x

a

=

y

b

=

z

c

x

a

=

y

b

=

z

c

=

x+y+z

a+b+c

\frac{x}{3x-y-z}=\frac{y}{3y-z-x}=\frac{z}{3z-x-y}

3x−y−z

x

=

3y−z−x

y

=

3z−x−y

z

\implies\:\frac{x}{3x-y-z}=\frac{y}{3y-z-x}=\frac{z}{3z-x-y}=\frac{x+y+z}{3x-y-z+3y-z-x+3z-x-y}⟹

3x−y−z

x

=

3y−z−x

y

=

3z−x−y

z

=

3x−y−z+3y−z−x+3z−x−y

x+y+z

\implies\:\frac{x}{3x-y-z}=\frac{y}{3y-z-x}=\frac{z}{3z-x-y}=\frac{x+y+z}{3x+3y+3z-2x-2y-2z}⟹

3x−y−z

x

=

3y−z−x

y

=

3z−x−y

z

=

3x+3y+3z−2x−2y−2z

x+y+z

\implies\:\frac{x}{3x-y-z}=\frac{y}{3y-z-x}=\frac{z}{3z-x-y}=\frac{x+y+z}{3(x+y+z)-2(x+y+z)}⟹

3x−y−z

x

=

3y−z−x

y

=

3z−x−y

z

=

3(x+y+z)−2(x+y+z)

x+y+z

\implies\:\frac{x}{3x-y-z}=\frac{y}{3y-z-x}=\frac{z}{3z-x-y}=\frac{x+y+z}{x+y+z}⟹

3x−y−z

x

=

3y−z−x

y

=

3z−x−y

z

=

x+y+z

x+y+z

\implies\:\boxed{\frac{x}{3x-y-z}=\frac{y}{3y-z-x}=\frac{z}{3z-x-y}=1}⟹

3x−y−z

x

=

3y−z−x

y

=

3z−x−y

z

=1

Similar questions