Math, asked by suriesiva, 7 months ago


x2 +1/x2 = 23 find the values of x+1/x

Answers

Answered by sonisiddharth751
4

the values of x+1/x = 5

Step-by-step explanation:

 \\  \tt \large \purple {Given} \\

  • x² + 1/x² = 23

 \\  \tt \large \purple{To \: find} \\

  • find the values of x+1/x .

 \:  \\  \tt \large \purple {Formula \: used} \:

 \boxed{ \sf \:  {x}^{2}  +  {y}^{2}  =  {(x + y)}^{2}  - 2xy} \\

 \tt \large  \purple{Solution} \\

 \boxed{ \sf \:  {x}^{2}  +  {y}^{2}  =  {(x + y)}^{2}  - 2xy} \\

 \\  \bf \: use \: Formula \: \boxed{ \sf \:  {x}^{2}  +  {y}^{2}  =  {(x + y)}^{2}  - 2xy}  \\  \\  :\implies\sf \:  {\big(x +  \dfrac{1}{x}\big )}^{2}  - 2 \times x \times  \dfrac{1}{x}  = 23 \\  \\ :\implies \sf \: {\big(x +  \dfrac{1}{x}\big )}^{2} - 2\times \cancel x \times  \dfrac{1}{ \cancel  x}  \\  \\  :\implies\sf \:  {\big(x +  \dfrac{1}{x}\big )}^{2}  - 2 = 23 \\  \\ :\implies \sf \:  {\big(x +  \dfrac{1}{x}\big )}^{2}  = 23 + 2 \\  \\ :\implies \sf \:  {\big(x +  \dfrac{1}{x}\big )}^{2}  = 25 \\  \\  :\implies\sf \: x +  \dfrac{1}{x}  =   \sqrt{25}   \\  \\ :\implies \sf \: x +  \dfrac{1}{x}  = 5

Hence, required values of x+1/x is 5 .

 \\

★ Some basic identities :-

  • ( a + b )² = a² + ab + b² .
  • ( a – b )² = a² – ab + b² .
  • ( a + b ) ( a – b ) = a² – b² .
  • ( a + b )³ = a³ + b³ + 3ab( a + b )
  • ( a – b )³ = a³ – b³ – 3ab( a – b )
  • ( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca .

Similar questions