X2+1/x2=27 then find the value of 3x3+5x-3/x3-5/x
Answers
Given :-
- x² + 1/x² = 27 .
To Find :-
- (3x³ + 5x - 3/x³ - 5/x) = ?
Solution :-
→ x² + 1/x² = 27
subtracting 2 from both sides,
→ x² + 1/x² - 2 = 27 - 2
→ (x)² + (1/x)² - 2 * x * 1/x = 25
→ (x - 1/x)² = 25
→ (x - 1/x) = ± 5
so, taking + 5
→ (x - 1/x)³ = (5)³
→ x³ - 1/x³ - 3 * x * 1/x(x - 1/x) = 125
→ x³ - 1/x³ - 3 * 5 = 125
→ (x³ - 1/x³) = 125 + 15
→ (x³ - 1/x³) = 140
and, taking (-5)
→ (x - 1/x)³ = (-5)³
→ x³ - 1/x³ - 3 * x * 1/x(x - 1/x) = (-125)
→ x³ - 1/x³ - 3 * (-5) = (-125)
→ (x³ - 1/x³) = (-125) - 15
→ (x³ - 1/x³) = (-140)
then,
→ (3x³ + 5x - 3/x³ - 5/x)
→ 3(x³ - 1/x³) + 5(x - 1/x)
→ 3 * 140 + 5 * 5
→ 420 + 25
→ 445 (Ans.)
or,
→ (3x³ + 5x - 3/x³ - 5/x)
→ 3(x³ - 1/x³) + 5(x - 1/x)
→ 3 * (-140) + 5 * (-5)
→ (-420) + (-25)
→ (-445) (Ans.)
Learn more :-
JEE mains Question :-
https://brainly.in/question/22246812
. Find all the zeroes of the polynomial x4
– 5x3 + 2x2+10x-8, if two of its zeroes are 4 and 1.
https://brainly.in/question/39026698
Answer:
445
Step-by-step explanation:
x^2 + 1/x^2 = 27
(x - 1/x)^2 = x^2 + 1/x^2 - 2×x×1/x
ie. (x - 1/x)^2 = 27 - 2 = 25
So. (x - 1/x) = 5
(x - 1/x)^3 = x^3 - 1/x^3 - 3×x×1/x(x - 1/x)
5^3 = x^3 - 1/x^3 - 3×5
125 = x^3 - 1/x^3 - 15
x^3 - 1/x^3 = 125 + 15
x^3 - 1/x^3 = 140 . So
3x^3 + 5x - 3/x^3 - 5/x
= 3(x^3 - 1/x^3) +5(x - 1/x)
= 3 × 140 + 5×5
=420 + 25 = 445