Math, asked by akangsha25, 3 months ago

(x²+1/x²)-5(x+1/x)= 4 (solve it)​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:\bigg( {x}^{2} +  \dfrac{1}{ {x}^{2} } \bigg) - 5\bigg(x + \dfrac{1}{x} \bigg) = 4

can be rewritten as

\rm :\longmapsto\:\bigg( {x}^{2} +  \dfrac{1}{ {x}^{2} } \bigg) - 5\bigg(x + \dfrac{1}{x} \bigg) - 4 = 0 -  -  - (1)

 \purple{\rm :\longmapsto\:Let \: x + \dfrac{1}{x} = y} -  -  - (2)

On squaring both sides, we get

\purple{\rm :\longmapsto\: {\bigg(x + \dfrac{1}{x} \bigg)}^{2} =  {y}^{2}}

\purple{\rm :\longmapsto\: {x}^{2}  + \dfrac{1}{ {x}^{2} } + 2 =  {y}^{2}}

\purple{\rm :\longmapsto\: {x}^{2}  + \dfrac{1}{ {x}^{2} }=  {y}^{2} - 2}  -  - (3)

On substituting equation (2) and (3) in equation (1), we get .

\rm :\longmapsto\: ({y}^{2} - 2) - 5y - 4 = 0

\rm :\longmapsto\: {y}^{2} - 2- 5y - 4 = 0

\rm :\longmapsto\: {y}^{2} - 5y - 6 = 0

\rm :\longmapsto\: {y}^{2} - 6y + y - 6 = 0

\rm :\longmapsto\:y(y - 6) + 1(y - 6) = 0

\rm :\longmapsto\:(y - 6)(y + 1) = 0

\bf\implies \:y = 6 \:  \:  \:  \:  \: or \:  \:  \:  \: y =  - 1

Case :- 1

\rm :\longmapsto\:y \:  =  \: 6

\rm :\longmapsto\:x + \dfrac{1}{x} = 6

\rm :\longmapsto\: \dfrac{ {x}^{2}  + 1}{x} = 6

\rm :\longmapsto\: {x}^{2} + 1 = 6x

\rm :\longmapsto\: {x}^{2} - 6x + 1 = 0

We know,

\rm :\longmapsto\:The \: solution \: of \:  {ax}^{2} + bx + c = 0 \: is \: given \: by

\rm :\longmapsto\:x = \dfrac{ - b \:  \pm \:  \sqrt{ {b}^{2} - 4ac } }{2a}

Thus,

\rm :\longmapsto\:x = \dfrac{ - ( - 6) \:  \pm \:  \sqrt{ {( - 6)}^{2} - 4(1)(1)} }{2(1)}

\rm :\longmapsto\:x = \dfrac{6 \:  \pm \:  \sqrt{ 36 - 4} }{2}

\rm :\longmapsto\:x = \dfrac{6 \:  \pm \:  \sqrt{ 32} }{2}

\rm :\longmapsto\:x = \dfrac{6 \:  \pm \:  4\sqrt{ 2} }{2}

\bf :\longmapsto\:x = 3 \:  \pm \: 2 \sqrt{2}

Case :- 2

\rm :\longmapsto\:y =  -  \: 1

\rm :\longmapsto\:x + \dfrac{1}{x}  =  - 1

\rm :\longmapsto\:\dfrac{ {x}^{2}  + 1}{x}  =  - 1

\rm :\longmapsto\: {x}^{2} + 1 =  - x

\rm :\longmapsto\: {x}^{2}  + x+ 1 =  0

\rm :\longmapsto\:x = \dfrac{ - 1 \:  \pm \:  \sqrt{ {1}^{2} - 4(1)(1) } }{2(1)}

\rm :\longmapsto\:x = \dfrac{ - 1 \:  \pm \:  \sqrt{ {1} - 4} }{2(1)}

\rm :\longmapsto\:x = \dfrac{ - 1 \:  \pm \:  \sqrt{ - 3} }{2}   \: \cancel \in \: R

Hence,

Solution of

\bf :\longmapsto\:\bigg( {x}^{2} +  \dfrac{1}{ {x}^{2} } \bigg) - 5\bigg(x + \dfrac{1}{x} \bigg) = 4

is given by

\bf :\longmapsto\:x = 3 \:  \pm \: 2 \sqrt{2}

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

  • If Discriminant, D > 0, then roots of the equation are real and unequal.

  • If Discriminant, D = 0, then roots of the equation are real and equal.

  • If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

  • Discriminant, D = b² - 4ac
Similar questions