Math, asked by kanishq8541, 3 months ago

x²+1/x²=7 then find value of x³+1/x³​

Answers

Answered by mathdude500
5

\begin{gathered}\begin{gathered}\bf \:Given - \begin{cases} &\sf{ {x}^{2}  + \dfrac{1}{ {x}^{2} } = 7 }\end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To \: Find - \begin{cases} &\sf{ {x}^{3}  + \dfrac{1}{ {x}^{3}}}\end{cases}\end{gathered}\end{gathered}

\begin{gathered}\Large{\sf{{\underline{Formula \: Used - }}}}  \end{gathered}

 \boxed{ \bf{ \:  {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy}}

 \boxed{ \bf{ \:  {(x + y)}^{3}  =  {x}^{3}  +  {y}^{3}  + 3xy(x + y)}}

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\: {x}^{2}  + \dfrac{1}{ {x}^{2} }  = 7

Adding 2 on both sides, we get

\rm :\longmapsto\: {x}^{2}  + \dfrac{1}{ {x}^{2} }  + 2 = 7 + 2

\rm :\longmapsto\: {x}^{2}  +  {\bigg(\dfrac{1}{ {x}}  \bigg) }^{2}  + 2 \times x \times \dfrac{1}{x}  = 9

\rm :\longmapsto\: {\bigg( x + \dfrac{1}{x} \bigg) }^{2}  = 9

\rm :\longmapsto\: {\bigg( x + \dfrac{1}{x} \bigg) } =  \pm \: 3

Two cases arises :-

\begin{gathered}\begin{gathered}\bf \:either-\begin{cases} &\sf{x + \dfrac{1}{x}  = 3} \\ &\sf{or}\\ &\sf{x + \dfrac{1}{x} =  - 3 } \end{cases}\end{gathered}\end{gathered}

Case :- 1

\rm :\longmapsto\:x + \dfrac{1}{x}  = 3

On Cubing both sides, we get

\rm :\longmapsto\: {\bigg(x + \dfrac{1}{x}  \bigg) }^{3}  =  {(3)}^{3}

\rm :\longmapsto\: {x}^{3}  + \dfrac{1}{ {x}^{3} }  + 3 \times x \times \dfrac{1}{x} \bigg( x + \dfrac{1}{x} \bigg)  = 27

\rm :\longmapsto\: {x}^{3}  + \dfrac{1}{ {x}^{3} }  + 3 \times 3 = 27

\rm :\longmapsto\: {x}^{3}  + \dfrac{1}{ {x}^{3} }  = 27 - 9

\rm :\longmapsto\: {x}^{3}  + \dfrac{1}{ {x}^{3} }  = 18

Case :- 2

\rm :\longmapsto\:x + \dfrac{1}{x}  =  - 3

On cubing both sides, we get

\rm :\longmapsto\: {\bigg(x + \dfrac{1}{x}  \bigg) }^{3}  =  {( - 3)}^{3}

\rm :\longmapsto\: {x}^{3}  + \dfrac{1}{ {x}^{3} }  + 3 \times x \times \dfrac{1}{x} \bigg( x + \dfrac{1}{x} \bigg)  =  - 27

\rm :\longmapsto\: {x}^{3}  + \dfrac{1}{ {x}^{3} }  + 3 \times ( - 3) =  - 27

\rm :\longmapsto\: {x}^{3}  + \dfrac{1}{ {x}^{3} } - 9  =  - 27

\rm :\longmapsto\: {x}^{3}  + \dfrac{1}{ {x}^{3} }  =  - 27 + 9

\rm :\longmapsto\: {x}^{3}  + \dfrac{1}{ {x}^{3} }  = -  18

More Identities to know:

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b)² = (a - b)² + 4ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)

Answered by 12thpáìn
3

Given

  •  \sf \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  = 7

To Find

  •  \sf \:  {x}^{3}  +  \dfrac{1}{ {x}^{3} }

Formula Used

~~~~~~~~~~~~~~\boxed{\sf{(a+b)²= a²+ b²+ 2ab}}\\~~~~~~~~~~~~ \boxed{\sf(a+b)³= a³+b³+ 3ab(a+b)}

solution

\implies \sf  \:  \left({x}^{}  +  \dfrac{1}{ {x}^{} }  \right)^{2}  =  {x}^{2}  +  \dfrac{1}{ {x}^{2}  }  + 2 \times x \times  \dfrac{1}{x}

{\implies \sf  \:  \left({x}^{}  +  \dfrac{1}{ {x}^{} }  \right)^{2}  =  7  + 2 \times  \cancel{x} \times  \dfrac{1}{  \cancel{x}}   \:  \:  \: \:  \:  \:  -———   \left(\sf \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  = 7 \right)}

{\implies\sf  \:  \left({x}^{}  +  \dfrac{1}{ {x}^{} }  \right)  =   \sqrt{9}}

\implies\sf  \:  \left({x}^{}  +  \dfrac{1}{ {x}^{} }  \right)  =   3

Now On Cubing Both Side ,

\implies\sf  \:  \left({x}^{}  +  \dfrac{1}{ {x}^{} }  \right) ^{3}  =  {3}^{3}

\implies\sf  \:  {x}^{3}  +  \dfrac{1}{ {x}^{ 3} } + 3 \times x \times  \dfrac{1}{x} \left(x +  \dfrac{1}{x}    \right)  =  27 \:  \:

{\implies\sf  \:  {x}^{3}  +  \dfrac{1}{ {x}^{ 3} } + 3 \times 3 =  27 \:  \: ~~~~~\:  ————\left({x}^{}  +  \dfrac{1}{ {x}^{} }= 7 \right)}

\implies\sf  \:  {x}^{3}  +  \dfrac{1}{ {x}^{ 3} }  =  27  - 9

~~~~~~~~~~~~~~~~~\underline{★\boxed{\sf  \:  {x}^{3}  +  \dfrac{1}{ {x}^{ 3} }  = \: 18}}\\\\

More Useful identity

  • \sf(a + b)^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab
  • \sf(a  -  b)^{2}  =  {a}^{2}  +  {b}^{2}   -  2ab
  • \sf(a + b)(a - b)  =  {a}^{2}   -   {b}^{2}
  • \sf(a + b + c)^{2}  =  {a}^{2}  +  {b}^{2}  + {c}^{2} 2ab + 2bc + 2ca
  • \sf(a + b) ^{3}  =  {a}^{3}  + b^{3}  + 3ab(a + b)
  • \sf(a  -  b) ^{3}  =  {a}^{3}   -  b^{3}   -  3ab(a  -  b)
  • \sf a ^{3}  +  {b}^{3}  = (a + b)(a ^{2}  +  {b}^{2}  - ab)
  • \sf a ^{3}   - {b}^{3}  = (a  -  b)(a ^{2}  +  {b}^{2}   +  ab)
Similar questions