Math, asked by mahantinischala, 10 months ago

x²- 18x + 45. .............​

Answers

Answered by Vamprixussa
27

Given equation

x^{2} -18x+45=0

Solving, we get,

x^{2} -18x+45=0

\implies x^{2} -3x-15x+45=0

\implies x(x-3)-15(x-3)=0

\implies (x-15)(x-3)=0

Now,

x+15=0

\implies x= 15

x-3=0

\implies x = 3

\boxed{\boxed{\bold{Therefore, \ the \ zeroes \ of \ the \ polynomial \ are \ 15 \ and \ 3}}}}}}

                                                     


Anonymous: Awesome
Answered by SarcasticL0ve
10

Given:-

  •  \sf{ x^2 - 18x + 45}

To find:-

  • Zeroes of the polynomial.

Solution:-

\bold{\underline{\boxed{\sf{\purple{ x^2 - 18x + 45}}}}}

\implies \sf{x^2 - 3x - 15x + 45 = 0}

\implies \sf{x(x - 3) -15(x - 3) = 0}

\implies \sf{(x - 15)(x - 3) = 0}

\implies \sf{either \; (x - 15) \; or \; (x - 3) \; = \; 0}

\bullet \sf{(x - 15) = 0}

\implies \sf{x = 15}

\bullet \sf{(x - 3) = 0}

\implies \sf{x = 3}

\bold{\underline{\underline{\boxed{\sf{\purple{Therefore, \; zeroes \; of \; the \; polynomial \; are \; 15 \; and \; 3}}}}}}

\rule{200}{2}

Similar questions