Math, asked by riyakapoor1505, 6 months ago

x²+4√3x-63=0 solve by factorisation method​

Answers

Answered by ananyabagre2005
0

Step-by-step explanation:

x²+4√3x - 63 =0

=. By splitting the middle term

Solve by factorization:

x^{2} + 4\sqrt{3} - 63x

2

+4

3

−63

Solution:

p(x) = x^{2} + 4\sqrt{3}x - 63p(x)=x

2

+4

3

x−63

To factorize p(x)

\begin{gathered}p(x) = x^{2} + 4\sqrt{3} - 63 = 0 \\ \implies x^{2} - 3\sqrt{3}x + 7\sqrt{3}x - 63 = 0 \\ \implies x(x - 3\sqrt{3}) + 7\sqrt{3}(x - 3\sqrt{3}) = 0 \\ \implies (x+7\sqrt{3})(x-3\sqrt{3}) = 0\end{gathered}

p(x)=x

2

+4

3

−63=0

⟹x

2

−3

3

x+7

3

x−63=0

⟹x(x−3

3

)+7

3

(x−3

3

)=0

⟹(x+7

3

)(x−3

3

)=0

\begin{gathered}x + 7\sqrt{3} = 0 \\ x = -7\sqrt{3}\end{gathered}

x+7

3

=0

x=−7

3

\begin{gathered}x-3\sqrt{3} = 0 \\ x = 3\sqrt{3}\end{gathered}

x−3

3

=0

x=3

3

Therefore, zeroes of p(x) = x^{2} + 4\sqrt{3}x - 63p(x)=x

2

+4

3

x−63 are -7\sqrt{3}−7

3

and 3\sqrt{3}3

3

.

Similar questions