Math, asked by dharani9876, 30 days ago

x²-7x+10<=0 quadratic inequalities ​

Answers

Answered by piyush726
0

i dont know mate if i get the ans i will post to you

Answered by LivetoLearn143
1

\large\underline{\sf{Solution-}}

The given quadratic inequality is

\rm :\longmapsto\: {x}^{2} - 7x + 10 \leqslant 0

\rm :\longmapsto\: {x}^{2} - 5x - 2x + 10 \leqslant 0

\rm :\longmapsto\:x(x - 5) - 2(x - 5) \leqslant 0

\rm :\longmapsto\:(x - 5)(x - 2) \leqslant 0

We know,

If a and b are positive real numbers such that a < b then

\boxed{ \sf{ \: (x - a)(x - b) \leqslant 0 \:  \implies \: a \leqslant x \leqslant b}}

So, using this rule

\bf\implies \:2 \leqslant x \leqslant 5

\bf\implies \:x \:  \in \: [2, \: 5]

More to know :-

If a and b are positive real numbers such that a < b, then

\boxed{ \sf{ \: (x - a)(x - b)  &lt;  0 \:  \implies \: a  &lt;  x  &lt;  b}}

\boxed{ \sf{ \: (x - a)(x - b)   &gt;   0 \:  \implies \:   x  &lt; a \: or \: x   &gt;   b}}

\boxed{ \sf{ \: (x - a)(x - b) \geqslant0 \:  \implies \:   x \leqslant  a \: or \: x \geqslant b}}

\boxed{ \sf{ \: xy &gt; 0 \:  \implies \: x &gt; 0,y &gt; 0 \:  \: or \: x &lt; 0,y &lt; 0}}

\boxed{ \sf{ \: xy  &lt;  0 \:  \implies \: x &gt; 0,y  &lt;  0 \:  \: or \: x &lt; 0,y  &gt;  0}}

Similar questions