x2-7x+5=0?
Plz tell the answer Fast plz
Answers
Answer:
Step-by-step explanation:
★
To prove:−
\sf \frac{Sin\theta -cos\theta +1}{sin\theta +cos\theta -1}=\frac{1}{sec\theta - tan\theta}
sinθ+cosθ−1
Sinθ−cosθ+1
=
secθ−tanθ
1
\begin{gathered}\\\end{gathered}
\begin{gathered}\bigstar \underline{\underline{\sf Proof:-}}\\\end{gathered}
★
Proof:−
\begin{gathered}\\\end{gathered}
Formulas used:-
\begin{gathered}\\\end{gathered}
\begin{gathered}\leadsto \sf \frac{sin\theta }{cos\theta } =tan\theta\\\end{gathered}
⇝
cosθ
sinθ
=tanθ
\begin{gathered}\leadsto \sf \frac{1}{cos\theta } =sec\theta \\\end{gathered}
⇝
cosθ
1
=secθ
\begin{gathered}\leadsto \sf sec^2\theta -tan^2\theta =1\\\end{gathered}
⇝sec
2
θ−tan
2
θ=1
\begin{gathered}\leadsto \sf a^2 -b^2 =(a+b)(a-b)\\\end{gathered}
⇝a
2
−b
2
=(a+b)(a−b)
-----------------------
LHS:
\begin{gathered}:\implies \sf \frac{ \sf sin\theta - cos\theta +1}{sin\theta +cos\theta -1}\\\\\end{gathered}
:⟹
sinθ+cosθ−1
sinθ−cosθ+1
Dividing numerator & denominator by cosθ:
\begin{gathered}:\implies \sf \frac{(sin\theta - cos\theta +1)/cos\theta}{(sin\theta +cos\theta -1)/cos\theta} \\\\\end{gathered}
:⟹
(sinθ+cosθ−1)/cosθ
(sinθ−cosθ+1)/cosθ
\begin{gathered}:\implies \sf \frac{(sin\theta /cos\theta-(cos\theta /cos\theta )+1/cos\theta}{(sin\theta /cos\theta ) +(cos\theta /cos\theta )-1/cos\theta } \\\\\end{gathered}
:⟹
(sinθ/cosθ)+(cosθ/cosθ)−1/cosθ
(sinθ/cosθ−(cosθ/cosθ)+1/cosθ
\begin{gathered}:\implies \sf \frac{tan\theta -1 +sec\theta }{tan\theta +1-sec\theta } \\\\\end{gathered}
:⟹
tanθ+1−secθ
tanθ−1+secθ
\begin{gathered}:\implies \sf \frac{tan\theta +sec\theta -1}{tan\theta -sec\theta +(sec^2\theta - tan^2\theta )} \\\\\end{gathered}
:⟹
tanθ−secθ+(sec
2
θ−tan
2
θ)
tanθ+secθ−1
\begin{gathered}:\implies \sf \frac{tan\theta +sec\theta -1}{(tan\theta -sec\theta )+(sec\theta -tan\theta )(sec\theta +tan\theta )} \\\\\end{gathered}
:⟹
(tanθ−secθ)+(secθ−tanθ)(secθ+tanθ)
tanθ+secθ−1
\begin{gathered}:\implies \sf \frac{\cancel{tan\theta +sec\theta -1}}{sec\theta -tan\theta \cancel{-1+sec\theta +tan\theta }} \\\\\end{gathered}
:⟹
secθ−tanθ
−1+secθ+tanθ
tanθ+secθ−1
\begin{gathered}:\implies \bold{\sf \frac{1}{sec\theta tan\theta }}\\\\\end{gathered}
:⟹
secθtanθ
1
Therefore,
\begin{gathered}\mapsto \boxed{\boxed{\sf \frac{sin\theta - cos\theta + 1}{sin\theta + cos\theta - 1}= \frac{1}{sec\theta - tan\theta } }}\\\\\end{gathered}
↦
sinθ+cosθ−1
sinθ−cosθ+1
=
secθ−tanθ
1
Hence proved.
-----------------------------
HOPE IT HELPS!